Article,

Partial optimality in cubic correlation clustering

, , and .
Proceedings of the 40th International Conference on Machine Learning, PMLR, (2023)

Abstract

The higher-order correlation clustering problem is an expressive model, and recently, local search heuristics have been proposed for several applications. Certifying optimality, however, is NP-hard and practically hampered already by the complexity of the problem statement. Here, we focus on establishing partial optimality conditions for the special case of complete graphs and cubic objective functions. In addition, we define and implement algorithms for testing these conditions and examine their effect numerically, on two datasets.

Tags

Users

  • @scadsfct

Comments and Reviews