Abstract
As mudanças climáticas têm sérias implicações para a ocorrência de eventos climáticos extremos, com efeitos sociais, econômicos e ambientais significativos. A previsão de eventos extremos de seca é fundamental para o planejamento eficiente dos recursos hídricos, assim como para a adoção de medidas preventivas. Além disso, compreender os padrões climáticos que resultam em anos secos pode ser importante para os tomadores de decisão. Nesse trabalho, propomos um modelo de classificação de secas utilizando a técnica de aprendizado de máquina de máquinas de vetores de suporte. O modelo foi aplicado para o estado do Ceará, frequentemente atingido por secas longas e severas. As variáveis explicativas consistem em dados globais de temperatura em ponto de grade, o que permitiu identificar as regiões que mais influenciam a ocorrência de secas no Ceará. O modelo apresentou uma acurácia de 77%, ou seja, dos 61 anos avaliados, 47 foram classificados corretamente como anos secos ou não secos. A avaliação dos pesos atribuídos pelo modelo confirma a influência da temperatura da superfície do Oceano Pacífico e do Atlântico Sul sobre o regime de secas no Ceará.
Users
Please
log in to take part in the discussion (add own reviews or comments).