Abstract
In this paper, we address the problem of computing all locally optimal solutions of a given multi-objective problem whose images are sufficiently close to the Pareto front. Such -locally optimal solutions are particularly interesting in the context of multi-objective multimodal optimization (MMO). To accomplish this task, we first define a new set of interest, LQ, that is strongly related to the recently proposed set of -acceptable solutions. Next, we propose a new unbounded archiver, ArchiveUpdateLQ, aiming to capture LQ,in the limit. This archiver can in principle be used in combination with any multi-objective evolutionary algorithm (MOEA). Further, we equip numerous MOEAs with ArchiveUpdateLQ, investigate their performances across several benchmark functions, and compare the enhanced MOEAs with their archive-free counterparts. For our experiments, we utilize the well-established metrics HV, IGDX, and p. Additionally, we propose and use a new performance indicator, IEDR, which results in comparable performances but which is applicable to problems defined in higher dimensions (in particular in decision variable space).
Users
Please
log in to take part in the discussion (add own reviews or comments).