Artikel in einem Konferenzbericht,

Citance-Contextualized Summarization of Scientific Papers

, , , und .
Findings of the Association for Computational Linguistics: EMNLP 2023, Seite 8551--8568. Singapore, Association for Computational Linguistics, (Dezember 2023)
DOI: 10.18653/v1/2023.findings-emnlp.573

Zusammenfassung

Current approaches to automatic summarization of scientific papers generate informative summaries in the form of abstracts. However, abstracts are not intended to show the relationship between a paper and the references cited in it. We propose a new contextualized summarization approach that can generate an informative summary conditioned on a given sentence containing the citation of a reference (a so-called ``citance''). This summary outlines content of the cited paper relevant to the citation location. Thus, our approach extracts and models the citances of a paper, retrieves relevant passages from cited papers, and generates abstractive summaries tailored to each citance. We evaluate our approach using **Webis-Context-SciSumm-2023**, a new dataset containing 540K computer science papers and 4.6M citances therein.

Tags

Nutzer

  • @scadsfct

Kommentare und Rezensionen