Abstract
We present a C++14 library for performance portability of scientific computing codes across CPU and GPU architectures. Our library combines generic data structures like vectors, multi-dimensional arrays, maps, graphs, and sparse grids with basic, reusable algorithms like convolutions, sorting, prefix sum, reductions, and scan. The memory layout of the data structures is adapted at compile-time using tuples with optional memory mirroring between CPU and GPU. We combine this transparent memory mapping with generic algorithms under two alternative programming interfaces: a CUDA-like kernel interface for multi-core CPUs, Nvidia GPUs, and AMD GPUs, as well as a lambda interface. We validate and benchmark the presented library using micro-benchmarks, showing that the abstractions introduce negligible performance overhead, and we compare performance against the current state of the art.
Links and resources
Tags