Article,

A systematic investigation of distilling large language models into cross-encoders for passage re-ranking

, , , , , , , , and .
(2024)

Abstract

Cross-encoders distilled from large language models (LLMs) are often more effective re-rankers than cross-encoders fine-tuned on manually labeled data. However, the distilled models usually do not reach their teacher LLM's effectiveness. To investigate whether best practices for fine-tuning cross-encoders on manually labeled data (e.g., hard-negative sampling, deep sampling, and listwise loss functions) can help to improve LLM ranker distillation, we construct and release a new distillation dataset: Rank-DistiLLM. In our experiments, cross-encoders trained on Rank-DistiLLM reach the effectiveness of LLMs while being orders of magnitude more efficient. Our code and data is available at https://github.com/webis-de/msmarco-llm-distillation.

Tags

Users

  • @scadsfct

Comments and Reviews