Article,

Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil

, , , , and .
Water, 12 (6): 1546 (2020)

Abstract

This study aimed to understand the perception of drought among farmers, in order to support decision-making in the water allocation process. This study was carried out in the Tabuleiro de Russas irrigated perimeter, in northeast Brazil, over the drought period of 2012–2018. Two analyses were conducted: (i) drought characterization, using the Standardized Precipitation Index (SPI) based on drought duration and frequency criteria; and (ii) analysis of farmers’ perceptions of drought via selection of explanatory variables using the Random Forest (RF) and the Decision Tree (DT) methods. The 2012–2018 drought period was defined as a meteorological phenomenon by local farmers; however, an SPI evaluation indicated that the drought was of a hydrological nature. According to the RF analysis, four of the nine study variables were more statistically important than the others in influencing farmers’ perception of drought: number of cultivated land plots, farmer’s age, years of experience in the agriculture sector, and education level. These results were confirmed using DT analysis. Understanding the relationship between these variables and farmers’ perception of drought could aid in the development of an adaptation strategy to water deficit scenarios. Farmers’ perception can be beneficial in reducing conflicts, adopting proactive management practices, and developing a holistic and efficient early warning drought system.

Tags

Users

  • @joum576e

Comments and Reviews