Abstract
This work is a summarized view on the results of a one-year cooperation between Oracle Corp. and the University of Leipzig. The goal was to research the organization of relationships within multi-dimensional time-series data, such as sensor data from the IoT area. We showed in this project that temporal property graphs with some extensions are a prime candidate for this organizational task that combines the strengths of both data models (graph and time-series). The outcome of the cooperation includes four achievements: (1) a bitemporal property graph model, (2) a temporal graph query language, (3) a conception of continuous event detection, and (4) a prototype of a bitemporal graph database that supports the model, language and event detection.
Users
Please
log in to take part in the discussion (add own reviews or comments).