Publications

Martin Lorenz, Tiago Amorim, Debargha Dey, Mersedeh Sadeghi, and Patrick Ebel. Computational Models for In-Vehicle User Interface Design: A Systematic Literature Review. July 2024. [PUMA: Computational Design In-Vehicle Interface Literature Models Review User]

Patrick Ebel, Ibrahim Emre Göl, Christoph Lingenfelder, and Andreas Vogelsang. Destination Prediction Based on Partial Trajectory Data. 2020. [PUMA: Based Data Destination Partial Prediction Trajectory on] URL

Martin Lorenz, Tiago Amorim, Debargha Dey, Mersedeh Sadeghi, and Patrick Ebel. Computational Models for In-Vehicle User Interface Design: A Systematic Literature Review. Proceedings of the 16th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 204–215, Association for Computing Machinery, New York, NY, USA, 2024. [PUMA: automated cognitive computational driving interfaces literature modeling review user] URL

Patrick Ebel, Julia Orlovska, Sebastian Hünemeyer, Casper Wickman, Andreas Vogelsang, and Rikard Söderberg. Automotive UX design and data-driven development: Narrowing the gap to support practitioners. Transportation Research Interdisciplinary Perspectives, (11):100455, 2021. [PUMA: Automotive UX data-driven design development practitioners support] URL

Patrick Ebel, Florian Brokhausen, and Andreas Vogelsang. The Role and Potentials of Field User Interaction Data in the Automotive UX Development Lifecycle: An Industry Perspective. 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 141–150, Association for Computing Machinery, New York, NY, USA, 2020. [PUMA: experience in-vehicle information interview study systems user] URL

Patrick Ebel, Kim Julian Gülle, Christoph Lingenfelder, and Andreas Vogelsang. ICEBOAT: An Interactive User Behavior Analysis Tool for Automotive User Interfaces. Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, Association for Computing Machinery, New York, NY, USA, 2022. [PUMA: Data Design Driving Human-Computer In-Vehicle Information Interaction Naturalistic System Tools Visualization] URL

Marzan Tasnim Oyshi, Benjamin Russig, Raimund Dachselt, and Stefan Gumhold. VRCellLabeler (VCL): Immersive labeling of Platynereis embryo's cell lineage trees in Virtual Reality. September 2022. [PUMA: Immersive Platynereis Reality VCL VRCellLabeler Virtual cell embryo's labeling lineage trees]

Somnath Dutta, Benjamin Russig, and Stefan Gumhold. 3D Point Set Registration based on Hierarchical Descriptors. Journal of WSCG, (30):44-53, August 2022. [PUMA: 3D Descriptors Hierarchical Point Registration Set]

Tobias Hänel, Nishant Kumar, Dmitrij Schlesinger, Mengze Li, Erdem Ünal, Abouzar Eslami, and Stefan Gumhold. Enhancing Fairness of Visual Attribute Predictors. Proceedings of the Asian Conference on Computer Vision (ACCV), 1211-1227, December 2022. [PUMA: Attribute Enhancing Fairness Predictors Visual]

Marzan Tasnim Oyshi, Verena Maleska, Jochen Schanze, Franziskus Bormann, Raimund Dachselt, and Stefan Gumhold. FloodVis: Visualization of Climate Ensemble Flood Projections in Virtual Reality.. EnvirVis@ EuroVis, 1--9, 2022. [PUMA: Climate Ensemble Flood FloodVis Projections Reality. Virtual Visualization]

Britta Pester, Benjamin Russig, Oliver Winke, Carolin Ligges, Raimund Dachselt, and Stefan Gumhold. Understanding multi-modal brain network data: An immersive 3D visualization approach. Comput. Graph., (106)C:88–97, Pergamon Press, Inc., USA, August 2022. [PUMA: EEG Immersive Origin–destination Partial brain coherence connectivity directed reality virtual visualization] URL

Marzan Tasnim Oyshi, Danny Schober, Juliette-Michelle Burkhardt, Verena Maleska, Tillmann Auguszt, Linus Langhans, Richard Karl Fuchs, and Stefan Gumhold. ExtremeWeatherVis: Visualizing Extreme Weather Events for Multi-City in Virtual Reality to Support Decision Making. In Soumya Dutta, Kathrin Feige, Karsten Rink, and Baldwin Nsonga (Eds.), Workshop on Visualisation in Environmental Sciences (EnvirVis), The Eurographics Association, 2024. [PUMA: Decision Events Extreme ExtremeWeatherVis Making Multi-City Reality Virtual Visualizing Weather]

Nishant Kumar, Lukas Krause, Thomas Wondrak, Sven Eckert, Kerstin Eckert, and Stefan Gumhold. Robust Reconstruction of the Void Fraction from Noisy Magnetic Flux Density Using Invertible Neural Networks. Sensors, (24)42024. [PUMA: Density Flux Fraction Invertible Magnetic Networks Neural Noisy Reconstruction Void] URL

Somnath Dutta, Benjamin Russig, and Stefan Gumhold. GPU-Accelerating Hierarchical Descriptors for Point Set Registration. November 2023. [PUMA: Descriptors GPU-Accelerating Hierarchical Point Registration Set]

Masoud Taghikhah, Nishant Kumar, Sinisa Segvić, Abouzar Eslami, and Stefan Gumhold. Quantile-based maximum likelihood training for outlier detection. Proc. Conf. AAAI Artif. Intell., (38)19:21610--21618, Association for the Advancement of Artificial Intelligence (AAAI), March 2024. [PUMA: Quantile-based detection likelihood maximum outlier training]

Baldwin Nsonga, Jordi Ventosa-Molina, Denis Koschichow, Jochen Fröhlich, Stefan Gumhold, and Gerik Scheuermann. Visual analysis of the impact of periodic wakes on the pressure side of a turbine blade. Journal of Visualization, (26)June 2023. [PUMA: Visual analysis blade impact periodic pressure side turbine wakes]

Aryaman Gupta, Ulrik Günther, Pietro Incardona, Guido Reina, Steffen Frey, Stefan Gumhold, and Ivo F Sbalzarini. Efficient raycasting of volumetric depth images for remote visualization of large volumes at high frame rates. 2023 IEEE 16th Pacific Visualization Symposium (PacificVis), IEEE, April 2023. [PUMA: depth frame high images large rates raycasting remote visualization volumes volumetric]

Marzan Tasnim Oyshi, Sebastian Vogt, and Stefan Gumhold. TmoTA: Simple, highly responsive tool for multiple object tracking annotation. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1--11, ACM, New York, NY, USA, April 2023. [PUMA: TmoTA annotation multiple object tool tracking]

Elias Werner, Nishant Kumar, Matthias Lieber, Sunna Torge, Stefan Gumhold, and Wolfgang E Nagel. Examining Computational Performance of Unsupervised Concept Drift Detection: A Survey and Beyond. arXiv preprint arXiv:2304.08319, 2023. [PUMA: Computational Concept Detection Drift Performance Unsupervised]

Weizhou Luo, Zhongyuan Yu, Rufat Rzayev, Marc Satkowski, Stefan Gumhold, Matthew McGinity, and Raimund Dachselt. PEARL: Physical Environment based Augmented Reality Lenses for In-Situ Human Movement Analysis. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 381Association for Computing Machinery, New York, NY, USA, April 2023. [PUMA: Analytics Immersive In-situ affordance analysis augmented/mixed data movement physical reality referents visualization] URL

Nishant Kumar, Siniša Šegvić, Abouzar Eslami, and Stefan Gumhold. Normalizing Flow based Feature Synthesis for Outlier-Aware Object Detection. 2023. [PUMA: Detection Feature Flow Normalizing Object Outlier-Aware Synthesis] URL

David Groß, Michaela Klauck, Timo P. Gros, Marcel Steinmetz, Jörg Hoffmann, and Stefan Gumhold. Glyph-Based Visual Analysis of Q-Leaning Based Action Policy Ensembles on Racetrack. In Ebad Banissi, Anna Ursyn, Mark W. McK. Bannatyne, João Moura Pires, Nuno Datia, Kawa Nazemi, Boris Kovalerchuk, Razvan Andonie, Minoru Nakayama, Filippo Sciarrone, Weidong Huang, Quang Vinh Nguyen, Mabule Samuel Mabakane, Adrian Rusu, Marco Temperini, Urska Cvek, Marjan Trutschl, Heimo Müller, Harri Siirtola, Wai Lok Woo, Rita Francese, Veronica Rossano, Tania Di Mascio, Fatma Bouali, Gilles Venturini, Sebastian Kernbach, Delfina Malandrino, Rocco Zaccagnino, Jian J. Zhang, Xiaosong Yang, and Vladimir Geroimenko (Eds.), 26th International Conference Information Visualisation, IV 2022, Vienna, Austria, July 19-22, 2022, 1--10, IEEE, 2022. [PUMA: Action Analysis Based Glyph-Based Policy Q-Leaning Racetrack Visual] URL

Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck, and Marcel Steinmetz. TraceVis: Towards Visualization for Deep Statistical Model Checking. Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends: 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part IV, 27–46, Springer-Verlag, Berlin, Heidelberg, 2020. [PUMA: Checking Model Networks Neural Statistical Visualization] URL

Ostap Okhrin, and Alexander Ristig. Penalized estimation of hierarchical Archimedean copula. J. Multivar. Anal., (201)CAcademic Press, Inc., USA, July 2024. [PUMA: 62G07 62H12 Archimedean Hierarchical Maximum Stage-wise copula estimation likelihood] URL

Christian Genest, Ostap Okhrin, and Taras Bodnar. Copula modeling from Abe Sklar to the present day. J. Multivar. Anal., (201)CAcademic Press, Inc., USA, July 2024. [PUMA: 62G32 62H05 62H10 62H12 62H15 62H20 Copula Dependence modeling models] URL

Martin Waltz, Ostap Okhrin, and Michael Schultz. Self-organized free-flight arrival for urban air mobility. Transportation Research Part C: Emerging Technologies, (167):104806, 2024. [PUMA: Deep Urban air eVTOL learning mobility reinforcement] URL

Jing Zou, Martin Odening, and Ostap Okhrin. Plant growth stages and weather index insurance design. Annals of actuarial science, 438--458, 2023. [PUMA: Plant design growth index insurance stages; weather]

Fabian Hart, and Ostap Okhrin. Enhanced method for reinforcement learning based dynamic obstacle avoidance by assessment of collision risk. Neurocomputing, (568):127097, 2024. [PUMA: Collision Dynamic Reinforcement Training avoidance environment learning metric obstacle risk] URL

Ostap Okhrin, Michael Rockinger, and Manuel Schmid. Simulating the Cox--Ingersoll--Ross and Heston processes: matching the first four moments. J. Comput. Finance, Infopro Digital Services Limited, 2022. [PUMA: Cox--Ingersoll--Ross Heston Simulating processes]

Ostap Okhrin, Michael Rockinger, and Manuel Schmid. Distributional properties of continuous time processes: from CIR to bates. AStA Advances in Statistical Analysis, (107)3:397-419, September 2023. [PUMA: CIR Distributional Higher Jump Squar Stochastic diffusion moments process properties volatility] URL

Nikolaus Hautsch, Ostap Okhrin, and Alexander Ristig. Maximum-Likelihood Estimation Using the Zig-Zag Algorithm. Journal of Financial Econometrics, (21)4:1346-1375, 2023. [PUMA: Bitcoin Gauß–Seidel conditional correlation dynamic efficient estimation iterative] URL

Dianzhao Li, and Ostap Okhrin. Vision-Based DRL Autonomous Driving Agent with Sim2Real Transfer. 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 866-873, 2023. [PUMA: Automobiles Autonomous Measurement Reinforcement Statistical Task Videos analysis learning vehicles]

Fabian Hart, Ostap Okhrin, and Martin Treiber. Vessel-following model for inland waterways based on deep reinforcement learning. Ocean Eng., (281)114679:114679, Elsevier BV, August 2023. [PUMA: Vessel-following deep inland learning model reinforcement waterways]

Martin Waltz, and Ostap Okhrin. Spatial–temporal recurrent reinforcement learning for autonomous ships. Neural Networks, (165):634-653, 2023. [PUMA: Autonomous COLREG Deep Recurrency, learning, reinforcement surface vehicle] URL

Niklas Paulig, and Ostap Okhrin. Robust path following on rivers using bootstrapped reinforcement learning. Ocean Engineering, (298):117207, 2024. [PUMA: Autonomous Deep Path Restricted following; learning; reinforcement surface vessel waterways] URL

Fabian Hart, Ostap Okhrin, and Martin Treiber. Towards robust car-following based on deep reinforcement learning. Transportation Research Part C: Emerging Technologies, (159):104486, 2024. [PUMA: Car-following; Generalization; Reinforcement; String Validation; capabilities; learning; model; stability]

Chiara Molinari, Leonardo Solaini, Francesca Rebuzzi, Gianluca Tedaldi, Davide Angeli, Elisabetta Petracci, Dusan Prascevic, Jan Ewald, Erhard Rahm, Matteo Canale, Martinelli Giovanni, Anna Tomezzoli, Maria Bencivenga, Maria Raffaella Ambrosio, Daniele Marrelli, Paolo Morgagni, Giorgio Ercolani, Paola Ulivi, and Luca Saragoni. Genomic events stratifying prognosis of early gastric cancer. Gastric Cancer, (27)6:1189--1200, Springer Science and Business Media LLC, November 2024. [PUMA: ARID1A EGC; LRP1B Pen; Prognosis]

Jan Ewald, Ziyang He, Wassili Dimitriew, and Stefan Schuster. Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells. NPJ Syst. Biol. Appl., (10)1:77, Springer Science and Business Media LLC, July 2024. [PUMA: allocation cancer cells cells; energy glutamine; metabolism; mode; resource yeast]

Anika Hannemann, Jan Ewald, Leo Seeger, and Erik Buchmann. Federated Learning on Transcriptomic Data: Model Quality and Performance Trade-Offs. Computational Science – ICCS 2024: 24th International Conference, Malaga, Spain, July 2–4, 2024, Proceedings, Part IV, 279–293, Springer-Verlag, Berlin, Heidelberg, 2024. [PUMA: Cell Classification, Disease Federated Learning, Prognosis Type] URL

Yun Wei, Sayan Mukherjee, and XuanLong Nguyen. Minimum $\Phi$-distance estimators for finite mixing measures. 2023. [PUMA: Phi-distance estimators finite measures mixing] URL

Mikael Vejdemo-Johansson, CUNY College of Staten Island, and 2800 Victory Boulevard, 1S-215, Staten Island, NY 10314, USA, Sayan Mukherjee, CUNY Graduate Center, 365 5th Avenue, and New York NY 10016, USA, Center for Scalable Data Analytics and and Artificial Intelligence, Universit¨at Leipzig, and Humboldtstraße 25, Leipzig, Germany 04105, Max Planck and Institute for Mathematics in the Sciences, Inselstraße 22 and 04103 Leipzig Germany, and Departments of Statistical Science, and Mathematics, Computer Science, and Biostatistics & and Bioinformatics, Duke University, Durham, NC 27708, USA. Multiple hypothesis testing with persistent homology. Found. Data Sci., (4)4:667--705, American Institute of Mathematical Sciences (AIMS), 2022. [PUMA: Multiple homology hypothesis persistent testing;]

Brian St Thomas, Kisung You, Lizhen Lin, Lek-Heng Lim, and Sayan Mukherjee. Learning subspaces of different dimensions. J. Comput. Graph. Stat., (31)2:337--350, Informa UK Limited, April 2022. [PUMA: Learning different dimensions subspaces]

Sayan Mukherjee, and Vorapong Suppakitpaisarn. Robustness for Spectral Clustering of General Graphs under Local Differential Privacy. ArXiv, (abs/2309.06867)2023. [PUMA: Clustering; Differential General Graphs; Local Privacy Robustness; Spectral]

Kevin McGoff, Sayan Mukherjee, and Andrew B Nobel. Gibbs posterior convergence and the thermodynamic formalism. Ann. Appl. Probab., (32)1Institute of Mathematical Statistics, February 2022. [PUMA: Gibbs convergence formalism posterior thermodynamic]

Henry Kirveslahti, and Sayan Mukherjee. Representing fields without correspondences: the lifted Euler characteristic transform. J. Appl. Comput. Topol., (8)1:1--34, Springer Science and Business Media LLC, March 2024. [PUMA: Euler characteristic corresponcence transform]

Michele Caprio, and Sayan Mukherjee. Ergodic theorems for dynamic imprecise probability kinematics. International Journal of Approximate Reasoning, (152):325-343, 2023. [PUMA: Dynamic Ergodic Imprecise Lower Strong Subjective imprecise kinematics large law numbers probabilities probability] URL

Michele Caprio, Andrea Aveni, and Sayan Mukherjee. Concerning Two Classes of Non-Diophantine Arithmetics. Proceedings, (81)12022. [PUMA: Arithmetics Non-Diophantine] URL

Antonio Bikić, and Sayan Mukherjee. Pragmatist Intelligence: Where the Principle of Usefulness Can Take ANNs. 2024. [PUMA: ANN Intelligence; Pragmatist Usefulness;] URL

Shreya Arya, Justin Curry, and Sayan Mukherjee. A sheaf-theoretic construction of shape space. Found. Comut. Math., Springer Science and Business Media LLC, May 2024. [PUMA: construction; shape sheaf-theoretic; space]

Andrea Agazzi, Jianfeng Lu, and Sayan Mukherjee. Global optimality of Elman-type RNNs in the mean-field regime. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning, (202):196--227, PMLR, 23--29 Jul 2023. [PUMA: Elman-type Optimality, mean-field regime {RNN}s,] URL