Publications

Johannes Gerritzen, Andreas Hornig, Peter Winkler, and Maik Gude. A methodology for direct parameter identification for experimental results using machine learning—Real world application to the highly non-linear deformation behavior of FRP. Computational Materials Science, (244):113274, Elsevier, 2024. [PUMA: FRP area_architectures using experimental deformation direct learning application identification world parameter machine Real topic_engineering results highly non-linear behavior]

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, and Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: a disease; HCC, or intelligence; liver multivariable non-alcoholic multimodal ML, artificial WSIs, images; prediction support integration TACE, DICOM, AI, network; deep neural Digital Diagnosis; MVI, transarterial fatty topic_lifescience microvascular convolutional in learning; imaging; Communications invasion; NAFLD, chemoembolisation; hepatocellular Reporting steatohepatitis; Transparent Individual slide machine Prognosis Artificial data for NASH, whole Medicine; TRIPOD, of CNN, and Imaging carcinoma; diagnostic system; model]

Pascal Kerschke, and Heike Trautmann. Automated algorithm selection on continuous black-box problems by combining Exploratory Landscape Analysis and machine learning. Evol. Comput., (27)1:99--127, MIT Press, 2019. [PUMA: learning; single-objective analysis; black-box exploratory optimization; continuous machine optimization. Automated selection; algorithm landscape]

Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm selection: Survey and perspectives. Evol. Comput., (27)1:3--45, MIT Press, 2019. [PUMA: feature-based learning; metalearning data analysis; optimisation; automated streams.; exploratory combinatorial continuous machine approaches; Automated selection; algorithm configuration; landscape]

Praveen Vasudevan, Markus Wolfien, Heiko Lemcke, Cajetan Immanuel Lang, Anna Skorska, Ralf Gaebel, Anne-Marie Galow, Dirk Koczan, Tobias Lindner, Wendy Bergmann, Brigitte Mueller-Hilke, Brigitte Vollmar, Bernd Joachim Krause, Olaf Wolkenhauer, Gustav Steinhoff, and Robert David. CCR2 macrophage response determines the functional outcome following cardiomyocyte transplantation. Genome Med., (15)1:61, August 2023. [PUMA: Macrophages; learning; Myocardial topic_lifescience infarction; Immunocompromised; Cell therapy; Machine Single-cell]

Frank Cichos, Santiago Mui�os Landin, and Ravi Pradip. Chapter 5 - Artificial intelligence (AI) enhanced nanomotors and active matter. In Yuebing Zheng, and Zilong Wu (Eds.), Intelligent Nanotechnology, 113--144, Elsevier, 2023. [PUMA: agent particles, Optical Multi control Machine Active Feedback learning, Reinforcement topic_physchemistry reinforcement control,] URL

Christopher Klapproth, Rituparno Sen, Peter F Stadler, Sven Findeiß, and Jörg Fallmann. Common features in lncRNA annotation and classification: A survey. Noncoding RNA, (7)4:77, MDPI AG, December 2021. [PUMA: problems; coding extraction; feature sequence; machine lncRNA; learning classification]

Mersedeh Sadeghi, Daniel Pöttgen, Patrick Ebel, and Andreas Vogelsang. Explaining the Unexplainable: The Impact of Misleading Explanations on Trust in Unreliable Predictions for Hardly Assessable Tasks. Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, 36–46, Association for Computing Machinery, New York, NY, USA, 2024. [PUMA: XAI, learning, explainability, machine topic_visualcomputing trust] URL

Souhrid Mukherjee, Joy D Cogan, John H Newman, John A Phillips, 3rd, Rizwan Hamid, Undiagnosed Diseases Network, Jens Meiler, and John A Capra. Identifying digenic disease genes via machine learning in the Undiagnosed Diseases Network. Am. J. Hum. Genet., (108)10:1946--1963, Elsevier BV, October 2021. [PUMA: disease; prediction; disease learning; Network; oligogenic Diseases clinical digenic rare machine topic_lifescience Undiagnosed UDN;]

Mariia Tkachenko, Claire Chalopin, Boris Jansen-Winkeln, Thomas Neumuth, Ines Gockel, and Marianne Maktabi. Impact of pre- and post-processing steps for supervised classification of colorectal cancer in hyperspectral images. Cancers (Basel), (15)7April 2023. [PUMA: convolutional learning; cancer networks; imaging; classification; pre-processing post-processing; cancer; filter; colorectal median machine hyperspectral topic_lifescience]

Akshay Akshay, Mitali Katoch, Navid Shekarchizadeh, Masoud Abedi, Ankush Sharma, Fiona C Burkhard, Rosalyn M Adam, Katia Monastyrskaya, and Ali Hashemi Gheinani. Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis. Gigascience, (13)January 2024. [PUMA: problems; topic_federatedlearn visualization learning; data machine analysis; AutoML; classification]

Akshay Akshay, Masoud Abedi, Navid Shekarchizadeh, Fiona C Burkhard, Mitali Katoch, Alex Bigger-Allen, Rosalyn M Adam, Katia Monastyrskaya, and Ali Hashemi Gheinani. MLcps: machine learning cumulative performance score for classification problems. Gigascience, (12)December 2022. [PUMA: problems; topic_federatedlearn score unified learning; package; evaluation machine Python evaluation; model classification]

Leonie Lampe, Hans-Jürgen Huppertz, Sarah Anderl-Straub, Franziska Albrecht, Tommaso Ballarini, Sandrine Bisenius, Karsten Mueller, Sebastian Niehaus, Klaus Fassbender, Klaus Fliessbach, Holger Jahn, Johannes Kornhuber, Martin Lauer, Johannes Prudlo, Anja Schneider, Matthis Synofzik, Jan Kassubek, Adrian Danek, Arno Villringer, Janine Diehl-Schmid, Markus Otto, Matthias L Schroeter, and FTLD Consortium Germany. Multiclass prediction of different dementia syndromes based on multi-centric volumetric MRI imaging. NeuroImage Clin., (37)103320:103320, Elsevier BV, January 2023. [PUMA: MRI; Neurodegeneration; learning; unit_test Diagnosis; Volumetry topic_lifescience topic_neuroinspired Dementia; Machine]

Veronia Iskandar, Mohamed A. Abd El Ghany, and Diana Goehringer. NDP-RANK: Prediction and ranking of NDP systems performance using machine learning. Microprocessors and Microsystems, (96):104707, 2023. [PUMA: Near-data Modeling, topic_federatedlearn exploration Design processing, learning, space Machine Prediction,] URL

Marie-Theres Huemer, Alina Bauer, Agnese Petrera, Markus Scholz, Stefanie M Hauck, Michael Drey, Annette Peters, and Barbara Thorand. Proteomic profiling of low muscle and high fat mass: a machine learning approach in the KORA S4/FF4 study. J. Cachexia Sarcopenia Muscle, (12)4:1011--1023, Wiley, August 2021. [PUMA: mass index; skeletal learning; Appendicular mass; Machine Proteomics muscle Fat fat Muscle Body]

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, and Christian L. Müller. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv, 2019. [PUMA: (physics.data-an), Analysis, Probability Data sciences, Numerical Statistics FOS: Machine Physical sciences Analysis (cs.LG), Learning (math.NA), Mathematics, and Computer information] URL

Ariel Iporre-Rivas, Dorothee Saur, Karl Rohr, Gerik Scheuermann, and Christina Gillmann. Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network. J. Med. Imaging (Bellingham), (10)4:044502, SPIE-Intl Soc Optical Eng, July 2023. [PUMA: stroke medical learning; neural networks; imaging; machine prediction multi-modal topic_visualcomputing graph]

Veronika Scholz, Peter Winkler, Andreas Hornig, Maik Gude, and Angelos Filippatos. Structural damage identification of composite rotors based on fully connected neural networks and convolutional neural networks. Sensors (Basel), (21)6:2005, MDPI AG, March 2021. [PUMA: convolutional (SHM) monitoring learning; neural networks; rotors; health dense composites; connected structural composite machine fully]