Publications

Akshay Akshay, Masoud Abedi, Navid Shekarchizadeh, Fiona C Burkhard, Mitali Katoch, Alex Bigger-Allen, Rosalyn M Adam, Katia Monastyrskaya, und Ali Hashemi Gheinani. MLcps: machine learning cumulative performance score for classification problems. GigaScience, (12):giad108, Dezember 2023. [PUMA: MLcps Xack Yaff cumulative learning machine performance] URL

Ricardo Knauer, und Erik Rodner. Cost-Sensitive Best Subset Selection for Logistic Regression: A Mixed-Integer Conic Optimization Perspective. KI 2023: Advances in Artificial Intelligence: 46th German Conference on AI, Berlin, Germany, September 26--29, 2023, Proceedings, 114--129, Springer-Verlag, Berlin, Heidelberg, 2023. [PUMA: Zno best conic cost-sensitive interpretable learning machine meta-learning mixed-integer optimization selection subset]

Sophie Adama, Shang-Ju Wu, Nicoletta Nicolaou, und Martin Bogdan. Extendable hybrid approach to detect conscious states in a CLIS patient using machine learning. SNE Simul. Notes Eur., (32)1:37--45, ARGESIM Arbeitsgemeinschaft Simulation News, 2022. [PUMA: Zno conscious hybrid learning machine patient states {CLIS}]

Oliver Kirsten, Martin Bogdan, und Sophie Adama. Evaluating the DoC-Forest tool for Classifying the State of Consciousness in a Completely Locked-In Syndrome Patient. 2023 7th International Conference on Imaging, Signal Processing and Communications (ICISPC), 37-41, 2023. [PUMA: Complexity Computational Consciousness Information Learning Locked-In Machine Measures Modeling Neuroscience Prediction Predictive Processing Signal Syndrome Theory Training Zno algorithms and data learning modeling models processing]

Aruscha Kramm, Eric Peukert, André Ludwig, und Bogdan Franczyk. Machine Learning Based Mobile Capacity Estimation for Roadside Parking. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (10):99--106, Copernicus GmbH, 2024. [PUMA: Based Capacity Estimation Learning Machine Mobile Parking Roadside]

Maria Carolina Novitasari, Johannes Quaas, und Miguel R. D. Rodrigues. Cloudy with a chance of precision: satellite’s autoconversion rates forecasting powered by machine learning. Environmental Data Science, (3)Cambridge University Press (CUP), 2024. [PUMA: autoconversion forecasting learning machine rates satellite] URL

Johannes Gerritzen, Andreas Hornig, Peter Winkler, und Maik Gude. A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP. Computational Materials Science, (244 (2024))Elsevier Science B.V., September 2024. [PUMA: area_architectures topic_engineering Constitutive FIS_scads Fiber Machine Neural Parameter identification learning, modeling, networks, plastics, reinforced]

Johannes Gerritzen, Andreas Hornig, Peter Winkler, und Maik Gude. Direct parameter identification for highly nonlinear strain rate dependent constitutive models using machine learning. ECCM21 - Proceedings of the 21st European Conference on Composite Materials, (3):1252--1259, European Society for Composite Materials (ESCM), 02.07.2024. [PUMA: area_architectures topic_engineering Convolutional Direct FIS_scads Fiber Machine Strain dependency, identification, learning, networks, neural parameter plastics rate reinforced] URL

Najia Ahmadi, Quang Vu Nguyen, Martin Sedlmayr, und Markus Wolfien. A comparative patient-level prediction study in OMOP CDM: applicative potential and insights from synthetic data. Scientific reports, (14)1Nature Publishing Group, 27.01.2024. [PUMA: Databases, Electronic FIS_scads Factual, Health Humans, Informatics, Learning, Machine Medical Records topic_lifescience]

Katja Hoffmann, Yuan Peng, Tobias Schlosser, Gabriel Stolze, Holger Langner, Marcel Susky, Trixy Meyer, Marc Ritter, Danny Kowerko, Vinodh Kakkassery, Markus Wolfien, und Martin Sedlmayr. Towards Standardizing Ophthalmic Data for Seamless Interoperability in Eye Care. Studies in health technology and informatics, (317):139--145, IOS Press, Amsterdam u. a., 30.08.2024. [PUMA: topic_lifescience Diseases/therapy, Electronic Eye FIS_scads Germany, Health Humans, Information Interoperability/standards, Learning, Level Machine Ophthalmology Records/standards, Seven/standards,]