Publications

Bian Li, Jeffrey Mendenhall, John A Capra, and Jens Meiler. A multitask deep-learning method for predicting membrane associations and secondary structures of proteins. J. Proteome Res., (20)8:4089--4100, American Chemical Society (ACS), August 2021. [PUMA: multitask convolutional prediction; memory transmembrane deep learning; neural networks; topology long short-term structure secondary topic_lifescience prediction]

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, and Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: a disease; HCC, or intelligence; liver multivariable non-alcoholic multimodal ML, artificial WSIs, images; prediction support integration TACE, DICOM, AI, network; deep neural Digital Diagnosis; MVI, transarterial fatty microvascular convolutional in learning; imaging; Communications invasion; NAFLD, chemoembolisation; hepatocellular Reporting steatohepatitis; Transparent Individual slide machine Prognosis Artificial data for NASH, whole Medicine; TRIPOD, of CNN, and Imaging carcinoma; diagnostic system; model]

Qinghe Zeng, Christophe Klein, Stefano Caruso, Pascale Maille, Narmin Ghaffari Laleh, Daniele Sommacale, Alexis Laurent, Giuliana Amaddeo, David Gentien, Audrey Rapinat, Hélène Regnault, Cécile Charpy, Cong Trung Nguyen, Christophe Tournigand, Raffaele Brustia, Jean Michel Pawlotsky, Jakob Nikolas Kather, Maria Chiara Maiuri, Nicolas Loménie, and Julien Calderaro. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol., (77)1:116--127, Elsevier BV, July 2022. [PUMA: image artificial immune intelligence; pathology; gene deep learning; signatures; slide whole]

Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J Brinker, Christian Trautwein, Nadine T Gaisa, and Jakob N Kather. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: A possible preselection for molecular testing?. Eur. Urol. Focus, (8)2:472--479, Elsevier BV, March 2022. [PUMA: Artificial intelligence; learning; therapy for Deep mutations; Bladder cancer; Molecular fibroblast receptor testing growth factor FGFR3]

Lorenzo Maiello, Lorenzo Ball, Marco Micali, Francesca Iannuzzi, Nico Scherf, Ralf-Thorsten Hoffmann, Marcelo Gama de Abreu, Paolo Pelosi, and Robert Huhle. Automatic lung segmentation and quantification of aeration in computed tomography of the chest using 3D transfer learning. Front. Physiol., (12):725865, 2021. [PUMA: ARDS; index; recruitment; segmentation; uNet transfer lung deep learning; COVID-19; Jaccard]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, and Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, July 2022. [PUMA: Convolutional Artificial intelligence; Multiple-Instance deep neural networks; learning Weakly-supervised Learning; transformers; pathology; Vision Computational]

Scarlet Brockmoeller, Amelie Echle, Narmin Ghaffari Laleh, Susanne Eiholm, Marie Louise Malmstrøm, Tine Plato Kuhlmann, Katarina Levic, Heike Irmgard Grabsch, Nicholas P West, Oliver Lester Saldanha, Katerina Kouvidi, Aurora Bono, Lara R Heij, Titus J Brinker, Ismayil Gögenür, Philip Quirke, and Jakob Nikolas Kather. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J. Pathol., (256)3:269--281, Wiley, March 2022. [PUMA: metastasis; inflamed intelligence; deep learning; bowel predictive LNM adipose pT2 pT1 digital biomarker; cancer; artificial AI; pathology; colorectal and prediction new tissue; early]

Ali Al-Fatlawi, Negin Malekian, Sebastián Garc\'ıa, Andreas Henschel, Ilwook Kim, Andreas Dahl, Beatrix Jahnke, Peter Bailey, Sarah Naomi Bolz, Anna R Poetsch, Sandra Mahler, Robert Grützmann, Christian Pilarsky, and Michael Schroeder. Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers (Basel), (13)11:2654, MDPI AG, May 2021. [PUMA: cancer; pancreatitis; study transcriptome-wide deep learning; topic_lifescience association pancreatic chronic]

Ravi Pradip, and Frank Cichos. Deep reinforcement learning with artificial microswimmers. Emerging Topics in Artificial Intelligence (ETAI) 2022, (12204):104--110, 2022. [PUMA: microswimmers artificial learning reinforcement Deep]

Benjamin P Brown, Oanh Vu, Alexander R Geanes, Sandeepkumar Kothiwale, Mariusz Butkiewicz, Edward W Lowe, Jr, Ralf Mueller, Richard Pape, Jeffrey Mendenhall, and Jens Meiler. Introduction to the BioChemical Library (BCL): An application-based open-source toolkit for integrated cheminformatics and machine learning in computer-aided drug discovery. Front. Pharmacol., (13):833099, Frontiers Media SA, February 2022. [PUMA: discovery; library; cheminformatics; deep network; neural biochemical open-source BCL; drug design; topic_lifescience QSAR;]

Daniel Bühler, Nicole Power Guerra, Luisa Müller, Olaf Wolkenhauer, Martin Düffer, Brigitte Vollmar, Angela Kuhla, and Markus Wolfien. Leptin deficiency-caused behavioral change - A comparative analysis using EthoVision and DeepLabCut. Front. Neurosci., (17):1052079, March 2023. [PUMA: deep learning; behavioral analysis; DeepLabCut; EthoVision; obesity]

Chen Liu, Guillaume Bellec, Bernhard Vogginger, David Kappel, Johannes Partzsch, Felix Neumärker, Sebastian Höppner, Wolfgang Maass, Steve B Furber, Robert Legenstein, and Christian G Mayr. Memory-efficient deep learning on a SpiNNaker 2 prototype. Front. Neurosci., (12):840, Frontiers Media SA, November 2018. [PUMA: footprint; energy parallelism; memory pruning; SpiNNaker; efficient deep hardware; sparsity rewiring;]

Roman C Maron, Achim Hekler, Sarah Haggenmüller, Christof von Kalle, Jochen S Utikal, Verena Müller, Maria Gaiser, Friedegund Meier, Sarah Hobelsberger, Frank F Gellrich, Mildred Sergon, Axel Hauschild, Lars E French, Lucie Heinzerling, Justin G Schlager, Kamran Ghoreschi, Max Schlaak, Franz J Hilke, Gabriela Poch, Sören Korsing, Carola Berking, Markus V Heppt, Michael Erdmann, Sebastian Haferkamp, Dirk Schadendorf, Wiebke Sondermann, Matthias Goebeler, Bastian Schilling, Jakob N Kather, Stefan Fröhling, Daniel B Lipka, Eva Krieghoff-Henning, and Titus J Brinker. Model soups improve performance of dermoscopic skin cancer classifiers. Eur. J. Cancer, (173):307--316, Elsevier BV, September 2022. [PUMA: Artificial intelligence; learning; Deep Melanoma; soups; Dermatology; Robustness Calibration; Ensembles; topic_lifescience Model Generalisation; Nevus;]

Vincent D. Friedrich, Peter Pennitz, Emanuel Wyler, Julia M. Adler, Dylan Postmus, Kristina Müller, Luiz Gustavo Teixeira Alves, Julia Prigann, Fabian Pott, Daria Vladimirova, Thomas Hoefler, Cengiz Goekeri, Markus Landthaler, Christine Goffinet, Antoine-Emmanuel Saliba, Markus Scholz, Martin Witzenrath, Jakob Trimpert, Holger Kirsten, and Geraldine Nouailles. Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. eBioMedicine, (108):105312, 2024. [PUMA: Disease Cross-species model, learning Deep matching, Single-cell RNA-seq, COVID-19, analysis, state Hamster] URL

Chiara Maria Lavinia Loeffler, Nadine T Gaisa, Hannah Sophie Muti, Marko van Treeck, Amelie Echle, Narmin Ghaffari Laleh, Christian Trautwein, Lara R Heij, Heike I Grabsch, Nadina Ortiz Bruechle, and Jakob Nikolas Kather. Predicting mutational status of driver and suppressor genes directly from histopathology with Deep Learning: A systematic study across 23 solid tumor types. Front. Genet., (12):806386, 2021. [PUMA: genetic artificail (AI); pathway; deep learning; cancer genes; pathway TCGA; intelligence]

Niklas Paulig, and Ostap Okhrin. Robust path following on rivers using bootstrapped reinforcement learning. Ocean Engineering, (298):117207, 2024. [PUMA: Path waterways Autonomous Restricted vessel learning; surface reinforcement Deep following;] URL

Martin Waltz, Ostap Okhrin, and Michael Schultz. Self-organized free-flight arrival for urban air mobility. Transportation Research Part C: Emerging Technologies, (167):104806, 2024. [PUMA: Urban mobility eVTOL air learning reinforcement Deep] URL

Martin Waltz, and Ostap Okhrin. Spatial–temporal recurrent reinforcement learning for autonomous ships. Neural Networks, (165):634-653, 2023. [PUMA: COLREG Autonomous learning, surface vehicle reinforcement Recurrency, Deep] URL

Akshay Akshay, Mitali Katoch, Masoud Abedi, Navid Shekarchizadeh, Mustafa Besic, Fiona C Burkhard, Alex Bigger-Allen, Rosalyn M Adam, Katia Monastyrskaya, and Ali Hashemi Gheinani. SpheroScan: a user-friendly deep learning tool for spheroid image analysis. Gigascience, (12)Oxford University Press (OUP), December 2022. [PUMA: 3D image deep R-CNN; learning; high-throughput analysis; segmentation spheroids; Image screening; Mask]

Simon M. Hofmann, Frauke Beyer, Sebastian Lapuschkin, Ole Goltermann, Markus Loeffler, Klaus-Robert Müller, Arno Villringer, Wojciech Samek, and A. Veronica Witte. Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain. NeuroImage, (261):119504, 2022. [PUMA: Ageing, Cardiovascular a.i., mri, deep Explainable Brain-age, Structural learning risk factors,] URL

Alexander Kurz, Katja Hauser, Hendrik Alexander Mehrtens, Eva Krieghoff-Henning, Achim Hekler, Jakob Nikolas Kather, Stefan Fröhling, Christof von Kalle, and Titus Josef Brinker. Uncertainty estimation in medical image classification: Systematic review. JMIR Med. Inform., (10)8:e36427, August 2022. [PUMA: image out-of-distribution medical detection; deep learning; imaging; classification; calibration; network uncertainty estimation topic_lifescience]

Fabian Hart, Ostap Okhrin, and Martin Treiber. Vessel-following model for inland waterways based on deep reinforcement learning. Ocean Eng., (281)114679:114679, Elsevier BV, August 2023. [PUMA: waterways inland deep Vessel-following learning reinforcement model]

Peter Leonard Schrammen, Narmin Ghaffari Laleh, Amelie Echle, Daniel Truhn, Volkmar Schulz, Titus J Brinker, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Alexander Brobeil, Matthias Kloor, Lara R Heij, Dirk Jäger, Christian Trautwein, Heike I Grabsch, Philip Quirke, Nicholas P West, Michael Hoffmeister, and Jakob Nikolas Kather. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J. Pathol., (256)1:50--60, Wiley, January 2022. [PUMA: Lynch intelligence; deep learning; digital instability cancer; artificial syndrome; pathology; colorectal microsatellite computational]