Publications

Akshay Akshay, Mitali Katoch, Navid Shekarchizadeh, Masoud Abedi, Ankush Sharma, Fiona C Burkhard, Rosalyn M Adam, Katia Monastyrskaya, und Ali Hashemi Gheinani. Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis. Gigascience, (13)Januar 2024. [PUMA: problems; visualization learning; data machine analysis; AutoML; classification]

Kristian Schultz, Saptarshi Bej, Waldemar Hahn, Markus Wolfien, Prashant Srivastava, und Olaf Wolkenhauer. ConvGeN: A convex space learning approach for deep-generative oversampling and imbalanced classification of small tabular datasets. Pattern Recognition, (147):110138, 2024. [PUMA: Tabular Convex Imbalanced learning, GAN, data LoRAS, space data,] URL

Najia Ahmadi, Michele Zoch, Patricia Kelbert, Richard Noll, Jannik Schaaf, Markus Wolfien, und Martin Sedlmayr. Methods used in the development of common data models for health data: Scoping review. JMIR Med. Inform., (11):e45116, August 2023. [PUMA: Observational Data Healthcare; Interoperability; health Repositories; Interoperability Partnership elements; elements Healthcare model; ; Process; Medical Informatics; data; harmonisation; Suggestive data Process record; stakeholder Standardized Repositories Outcomes Partnership; involvement common record Development harmonisation model Informatics electronic]

Markus Wolfien, Najia Ahmadi, Kai Fitzer, Sophia Grummt, Kilian-Ludwig Heine, Ian-C Jung, Dagmar Krefting, Andreas Kühn, Yuan Peng, Ines Reinecke, Julia Scheel, Tobias Schmidt, Paul Schmücker, Christina Schüttler, Dagmar Waltemath, Michele Zoch, und Martin Sedlmayr. Ten topics to get started in medical informatics research. J. Med. Internet Res., (25):e45948, Juli 2023. [PUMA: clinical medical health; informatics; data communication; health digital data; interdisciplinary research]

Elena Williams, Manuel Kienast, Evelyn Medawar, Janis Reinelt, Alberto Merola, Sophie Anne Ines Klopfenstein, Anne Rike Flint, Patrick Heeren, Akira-Sebastian Poncette, Felix Balzer, Julian Beimes, Paul von Bünau, Jonas Chromik, Bert Arnrich, Nico Scherf, und Sebastian Niehaus. A standardized clinical data harmonization pipeline for scalable AI application deployment (FHIR-DHP): Validation and usability study. JMIR Med. Inform., (11):e43847, JMIR Publications Inc., März 2023. [PUMA: intelligence; mart AI care; deployment; IV; artificial fast application; information resources; care data; medical cooperation; data standardization for healthcare interoperability; AI; unit; FHIR; usability MIMIC diagnosis; interoperability patient pipeline; research; intensive]

Aryaman Gupta, Ulrik G�nther, Pietro Incardona, Guido Reina, Steffen Frey, Stefan Gumhold, und Ivo F. Sbalzarini. Efficient Raycasting of Volumetric Depth Images for Remote Visualization of Large Volumes at High Frame Rates. 2023 IEEE 16th Pacific Visualization Symposium (PacificVis), 61--70, IEEE, Seoul, Korea, Republic of, 2023. [PUMA: Streaming Lighting, Human-centered Visualization paradigms theory, Data visualization, graphics), computing, Rendering Manuals, concepts Visualization, Servers, and techniques (computer PI media, control,]

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, und Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: a disease; HCC, or intelligence; liver multivariable non-alcoholic multimodal ML, artificial WSIs, images; prediction support integration TACE, DICOM, AI, network; deep neural Digital Diagnosis; MVI, transarterial fatty microvascular convolutional in learning; imaging; Communications invasion; NAFLD, chemoembolisation; hepatocellular Reporting steatohepatitis; Transparent Individual slide machine Prognosis Artificial data for NASH, whole Medicine; TRIPOD, of CNN, and Imaging carcinoma; diagnostic system; model]

Daniel Ayala, Inma Hernández, David Ruiz, und Erhard Rahm. Multi-source dataset of e-commerce products with attributes for property matching. Data Brief, (41)107884:107884, Elsevier BV, April 2022. [PUMA: integration; engineering; Data Ontology; Property matching]

Katja Hoffmann, Katja Cazemier, Christoph Baldow, Silvio Schuster, Yuri Kheifetz, Sibylle Schirm, Matthias Horn, Thomas Ernst, Constanze Volgmann, Christian Thiede, Andreas Hochhaus, Martin Bornhäuser, Meinolf Suttorp, Markus Scholz, Ingmar Glauche, Markus Loeffler, und Ingo Roeder. Integration of mathematical model predictions into routine workflows to support clinical decision making in haematology. BMC Med. Inform. Decis. Mak., (20)1:28, Februar 2020. [PUMA: decision-making; workflow; Haematology; Support Mathematical therapy Clinical Data Routine treatment management; simulation; modelling; system optimization; Individual Computer planning; Model-based]

Christopher Rost, Andreas Thor, und Erhard Rahm. 4.-8. März 2019. Gesellschaft für Informatik, Bonn, 2019. [PUMA: Graph Graph, Analysis Model, Temporal Data] URL

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, und Christian L. Müller. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv, 2019. [PUMA: (physics.data-an), Analysis, Probability Data sciences, Numerical Statistics FOS: Machine Physical sciences Analysis (cs.LG), Learning (math.NA), Mathematics, and Computer information] URL

Pascal Kerschke, Holger H Hoos, Frank Neumann, und Heike Trautmann. Automated algorithm selection: Survey and perspectives. Evol. Comput., (27)1:3--45, MIT Press, 2019. [PUMA: feature-based learning; metalearning data analysis; optimisation; automated streams.; exploratory combinatorial continuous machine approaches; Automated selection; algorithm configuration; landscape]

Diego Esteves, Anisa Rula, Aniketh Janardhan Reddy, und Jens Lehmann. Toward Veracity Assessment in RDF Knowledge Bases: An Exploratory Analysis. J. Data and Information Quality, (9)3Association for Computing Machinery, New York, NY, USA, Februar 2018. [PUMA: exploratory trustworthiness, benchmark, fact DeFacto, data checking, quality, analysis data, linked] URL

André Petermann, Martin Junghanns, Stephan Kemper, Kevin Gómez, Niklas Teichmann, und Erhard Rahm. Graph Mining for Complex Data Analytics. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), 1316--1319, Dezember 2016. [PUMA: analysis;Data algorithms;Conferences;Graph design Intelligence and Data mining;Business;Algorithm Mining;Business models;Libraries;Partitioning]