Publications

Chengjin Xu, Fenglong Su, und Jens Lehmann. Time-aware Graph Neural Networks for Entity Alignment between Temporal Knowledge Graphs. 2022. [PUMA: Alignment Entity Graph Graphs Knowledge Networks Neural Temporal Time-aware Yaff] URL

Martin Bogdan. Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse. XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja), 201--207, Servizo de Publicacións da UDC, September 2022. [PUMA: Learning Xack algorithms learning networks neural neurological plausible spiking]

Aris Marcolongo, Mykhailo Vladymyrov, Sebastian Lienert, Nadav Peleg, Sigve Haug, und Jakob Zscheischler. Predicting years with extremely low gross primary production from daily weather data using Convolutional Neural Networks. Environmental Data Science, (1):e2, 2022. [PUMA: Convolutional Networks Neural Predicting data gross low primary production weather zno]

Adrian Lindenmeyer, Malte Blattmann, Stefan Franke, Thomas Neumuth, und Daniel Schneider. Inadequacy of common stochastic neural networks for reliable clinical decision support. 2024. [PUMA: Inadequacy clinical decision networks neural reliable stochastic support xack] URL

Peter Winkler, Norman Koch, Andreas Hornig, und Johannes Gerritzen. OmniOpt – A tool for hyperparameter optimization on HPC. In Heike Jagode, Hartwig Anzt, Hatem Ltaief, und Piotr Luszczek (Hrsg.), High Performance Computing - ISC High Performance Digital 2021 International Workshops, 2021, Revised Selected Papers, 285--296, Springer, Berlin u. a., Germany, 13.11.2021. [PUMA: FIS_scads High Hyperparameter Neural computing, networks optimization, performance xack]

Suryanarayana Maddu, Dominik Sturm, Bevan L. Cheeseman, Christian L. Müller, und Ivo F. Sbalzarini. Learning computable models from data. 1--6, 2021. [PUMA: Differential ENO-WENO, FIS_scads Neural Surrogate modeling networks, operators, yaff]

Johannes Gerritzen, Andreas Hornig, Peter Winkler, und Maik Gude. Direct parameter identification for highly nonlinear strain rate dependent constitutive models using machine learning. ECCM21 - Proceedings of the 21st European Conference on Composite Materials, (3):1252--1259, European Society for Composite Materials (ESCM), 02.07.2024. [PUMA: Convolutional Direct FIS_scads Fiber Machine Strain area_architectures dependency, identification, learning, networks, neural parameter plastics rate reinforced topic_engineering yaff] URL

Nishant Kumar, Lukas Krause, Thomas Wondrak, Sven Eckert, Kerstin Eckert, und Stefan Gumhold. Robust Reconstruction of the Void Fraction from Noisy Magnetic Flux Density Using Invertible Neural Networks. Sensors, (24)42024. [PUMA: topic_visualcomputing Density Flux Fraction Invertible Magnetic Networks Neural Noisy Reconstruction Void] URL

Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck, und Marcel Steinmetz. TraceVis: Towards Visualization for Deep Statistical Model Checking. Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends: 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part IV, 27–46, Springer-Verlag, Berlin, Heidelberg, 2020. [PUMA: Checking Model Networks Neural Statistical Visualization] URL

Lucas Schneider, Sara Laiouar-Pedari, Sara Kuntz, Eva Krieghoff-Henning, Achim Hekler, Jakob N Kather, Timo Gaiser, Stefan Fröhling, und Titus J Brinker. Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur. J. Cancer, (160):80--91, Elsevier BV, Januar 2022. [PUMA: topic_lifescience Biomarker Cancer; Convolutional Multimodal Omics fusion; identification; networks; neural]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, und Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, Juli 2022. [PUMA: topic_lifescience Artificial Computational Convolutional Learning; Multiple-Instance Vision Weakly-supervised deep intelligence; learning networks; neural pathology; transformers;]

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, und Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: topic_lifescience AI, Artificial CNN, Communications DICOM, Diagnosis; Digital HCC, Imaging Individual ML, MVI, Medicine; NAFLD, NASH, Prognosis Reporting TACE, TRIPOD, Transparent WSIs, a and artificial carcinoma; chemoembolisation; convolutional data deep diagnostic disease; fatty for hepatocellular images; imaging; in integration intelligence; invasion; learning; liver machine microvascular model multimodal multivariable network; neural non-alcoholic of or prediction slide steatohepatitis; support system; transarterial whole]

Benjamin P Brown, Oanh Vu, Alexander R Geanes, Sandeepkumar Kothiwale, Mariusz Butkiewicz, Edward W Lowe, Jr, Ralf Mueller, Richard Pape, Jeffrey Mendenhall, und Jens Meiler. Introduction to the BioChemical Library (BCL): An application-based open-source toolkit for integrated cheminformatics and machine learning in computer-aided drug discovery. Front. Pharmacol., (13):833099, Frontiers Media SA, Februar 2022. [PUMA: topic_lifescience BCL; QSAR; biochemical cheminformatics; deep design; discovery; drug library; network; neural open-source]

Veronika Scholz, Peter Winkler, Andreas Hornig, Maik Gude, und Angelos Filippatos. Structural damage identification of composite rotors based on fully connected neural networks and convolutional neural networks. Sensors (Basel), (21)6:2005, MDPI AG, März 2021. [PUMA: (SHM) composite composites; connected convolutional dense fully health learning; machine monitoring networks; neural rotors; structural]

Ariel Iporre-Rivas, Dorothee Saur, Karl Rohr, Gerik Scheuermann, und Christina Gillmann. Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network. J. Med. Imaging (Bellingham), (10)4:044502, SPIE-Intl Soc Optical Eng, Juli 2023. [PUMA: topic_visualcomputing graph imaging; learning; machine medical multi-modal networks; neural prediction stroke]

Marie Steinacker, Yuri Kheifetz, und Markus Scholz. Individual modelling of haematotoxicity with NARX neural networks: A knowledge transfer approach. Heliyon, (9)7:e17890, Elsevier BV, Juli 2023. [PUMA: topic_neuroinspired topic_mathfoundation Haematopoiesis; Precision Recurrent System Transfer identification; learning medicine; networks; neural unit_transfer]