Publications

Chengjin Xu, Fenglong Su, and Jens Lehmann. Time-aware Graph Neural Networks for Entity Alignment between Temporal Knowledge Graphs. 2022. [PUMA: Alignment Entity Graph Graphs Knowledge Networks Neural Temporal Time-aware Yaff] URL

Martin Bogdan. Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? - A thought-provoking impulse. XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja), 201--207, Servizo de Publicacións da UDC, September 2022. [PUMA: Learning Xack algorithms learning networks neural neurological plausible spiking]

Aris Marcolongo, Mykhailo Vladymyrov, Sebastian Lienert, Nadav Peleg, Sigve Haug, and Jakob Zscheischler. Predicting years with extremely low gross primary production from daily weather data using Convolutional Neural Networks. Environmental Data Science, (1):e2, 2022. [PUMA: Convolutional Networks Neural Predicting data gross low primary production weather]

Adrian Lindenmeyer, Malte Blattmann, Stefan Franke, Thomas Neumuth, and Daniel Schneider. Inadequacy of common stochastic neural networks for reliable clinical decision support. 2024. [PUMA: Inadequacy clinical decision networks neural reliable stochastic support] URL

Johannes Gerritzen, Andreas Hornig, Peter Winkler, and Maik Gude. A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP. Computational Materials Science, (244 (2024))Elsevier Science B.V., September 2024. [PUMA: area_architectures topic_engineering Constitutive FIS_scads Fiber Machine Neural Parameter identification learning, modeling, networks, plastics, reinforced]

Johannes Gerritzen, Andreas Hornig, Peter Winkler, and Maik Gude. Direct parameter identification for highly nonlinear strain rate dependent constitutive models using machine learning. ECCM21 - Proceedings of the 21st European Conference on Composite Materials, (3):1252--1259, European Society for Composite Materials (ESCM), Jul 2, 2024. [PUMA: area_architectures topic_engineering Convolutional Direct FIS_scads Fiber Machine Strain dependency, identification, learning, networks, neural parameter plastics rate reinforced] URL

Suryanarayana Maddu, Dominik Sturm, Christian L. Mueller, and Ivo F. Sbalzarini. Inverse Dirichlet weighting enables reliable training of physics informed neural networks. Machine learning: science and technology, (3)1IOP Publishing Ltd., Feb 15, 2022. [PUMA: topic_lifescience ALGORITHM FIS_scads active catastrophic flow forgetting, gradient modeling, multi-objective multi-scale networks, neural physics-informed regularization, training, turbulence,]

Sarah Perez, Suryanarayana Maddu, Ivo F. Sbalzarini, and Philippe Poncet. Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems. Journal of computational physics, (491)Academic Press Inc., Oct 15, 2023. [PUMA: topic_lifescience Adaptive Artificial Bayesian Carlo, FIS_scads Hamiltonian Intelligence, Monte Multi-objective Quantification Uncertainty learning, networks, neural physics-informed training, weight]

Neringa Jurenaite, Daniel Leon-Perinan, Veronika Donath, Sunna Torge, and Rene Jakel. SetQuence & SetOmic: Deep Set Transformer-based Representations of Cancer Multi-Omics. 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2022, 139--147, IEEE, New York u. a., United States of America, 2022. [PUMA: topic_federatedlearn livinglab Deep FIS_scads Network, Neural Representations Set analysis, expression, gene genome, language molecular multi-omics, mutome, natural processing, sequence]

Haozhe Jiang, Ostap Okhrin, and Michael Rockinger. Artificial neural network small-sample-bias-corrections of the AR(1) parameter close to unit root. Statistica Neerlandica, Wiley-Blackwell, Oxford u. a., Jul 31, 2024. [PUMA: topic_engineering FIS_scads bias correction, network, neural sample small]

Martin Waltz, and Ostap Okhrin. Spatial–temporal recurrent reinforcement learning for autonomous ships. Neural Networks, (2023)165:634--653, Elsevier Science B.V., Jun 15, 2023. [PUMA: topic_engineering Algorithms, Autonomous COLREG, Computer, Deep FIS_scads Networks, Neural Psychology, Recurrency, Reinforcement, Reward Ships, learning, reinforcement surface vehicle,]

Suryanarayana Maddu, Dominik Sturm, Bevan L. Cheeseman, Christian L. Müller, and Ivo F. Sbalzarini. Learning computable models from data. 1--6, 2021. [PUMA: Differential ENO-WENO, FIS_scads Neural Surrogate modeling networks, operators,]

Peter Winkler, Norman Koch, Andreas Hornig, and Johannes Gerritzen. OmniOpt – A tool for hyperparameter optimization on HPC. In Heike Jagode, Hartwig Anzt, Hatem Ltaief, and Piotr Luszczek (Eds.), High Performance Computing - ISC High Performance Digital 2021 International Workshops, 2021, Revised Selected Papers, 285--296, Springer, Berlin u. a., Germany, Nov 13, 2021. [PUMA: FIS_scads High Hyperparameter Neural computing, networks optimization, performance]

Nishant Kumar, Lukas Krause, Thomas Wondrak, Sven Eckert, Kerstin Eckert, and Stefan Gumhold. Robust Reconstruction of the Void Fraction from Noisy Magnetic Flux Density Using Invertible Neural Networks. Sensors, (24)42024. [PUMA: topic_visualcomputing Density Flux Fraction Invertible Magnetic Networks Neural Noisy Reconstruction Void] URL

Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck, and Marcel Steinmetz. TraceVis: Towards Visualization for Deep Statistical Model Checking. Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends: 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part IV, 27–46, Springer-Verlag, Berlin, Heidelberg, 2020. [PUMA: Checking Model Networks Neural Statistical Visualization] URL

Lucas Schneider, Sara Laiouar-Pedari, Sara Kuntz, Eva Krieghoff-Henning, Achim Hekler, Jakob N Kather, Timo Gaiser, Stefan Fröhling, and Titus J Brinker. Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur. J. Cancer, (160):80--91, Elsevier BV, January 2022. [PUMA: topic_lifescience Biomarker Cancer; Convolutional Multimodal Omics fusion; identification; networks; neural]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, and Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, July 2022. [PUMA: topic_lifescience Artificial Computational Convolutional Learning; Multiple-Instance Vision Weakly-supervised deep intelligence; learning networks; neural pathology; transformers;]

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, and Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: topic_lifescience AI, Artificial CNN, Communications DICOM, Diagnosis; Digital HCC, Imaging Individual ML, MVI, Medicine; NAFLD, NASH, Prognosis Reporting TACE, TRIPOD, Transparent WSIs, a and artificial carcinoma; chemoembolisation; convolutional data deep diagnostic disease; fatty for hepatocellular images; imaging; in integration intelligence; invasion; learning; liver machine microvascular model multimodal multivariable network; neural non-alcoholic of or prediction slide steatohepatitis; support system; transarterial whole]

Benjamin P Brown, Oanh Vu, Alexander R Geanes, Sandeepkumar Kothiwale, Mariusz Butkiewicz, Edward W Lowe, Jr, Ralf Mueller, Richard Pape, Jeffrey Mendenhall, and Jens Meiler. Introduction to the BioChemical Library (BCL): An application-based open-source toolkit for integrated cheminformatics and machine learning in computer-aided drug discovery. Front. Pharmacol., (13):833099, Frontiers Media SA, February 2022. [PUMA: topic_lifescience BCL; QSAR; biochemical cheminformatics; deep design; discovery; drug library; network; neural open-source]

Veronika Scholz, Peter Winkler, Andreas Hornig, Maik Gude, and Angelos Filippatos. Structural damage identification of composite rotors based on fully connected neural networks and convolutional neural networks. Sensors (Basel), (21)6:2005, MDPI AG, March 2021. [PUMA: (SHM) composite composites; connected convolutional dense fully health learning; machine monitoring networks; neural rotors; structural]