Publications

Veronia Iskandar, Mohamed A. Abd El Ghany, and Diana Goehringer. NDP-RANK: Prediction and ranking of NDP systems performance using machine learning. Microprocessors and Microsystems, (96):104707, 2023. [PUMA: topic_federatedlearn Design Machine Modeling, Near-data Prediction, exploration learning, processing, space] URL

Frank Cichos, Santiago Mui�os Landin, and Ravi Pradip. Chapter 5 - Artificial intelligence (AI) enhanced nanomotors and active matter. In Yuebing Zheng, and Zilong Wu (Eds.), Intelligent Nanotechnology, 113--144, Elsevier, 2023. [PUMA: topic_physchemistry Active Feedback Machine Multi Optical Reinforcement agent control control, learning, particles, reinforcement] URL

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, and Christian L. Müller. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv, 2019. [PUMA: (cs.LG), (math.NA), (physics.data-an), Analysis Analysis, Computer Data FOS: Learning Machine Mathematics, Numerical Physical Probability Statistics and information sciences sciences,] URL

Lucas Lange, Maurice-Maximilian Heykeroth, and Erhard Rahm. Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning. arXiv preprint arXiv:2409.01329, arXiv, September 2024. [PUMA: area_responsibleai area_bigdata (cs.CR), (cs.CV), (cs.LG), Computer Cryptography FOS: Learning Machine Pattern Recognition Security Vision and ep information sciences]

Johannes Gerritzen, Andreas Hornig, Peter Winkler, and Maik Gude. A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP. Computational Materials Science, (244 (2024))Elsevier Science B.V., September 2024. [PUMA: area_architectures topic_engineering Constitutive FIS_scads Fiber Machine Neural Parameter identification learning, modeling, networks, plastics, reinforced]

Johannes Gerritzen, Andreas Hornig, Peter Winkler, and Maik Gude. Direct parameter identification for highly nonlinear strain rate dependent constitutive models using machine learning. ECCM21 - Proceedings of the 21st European Conference on Composite Materials, (3):1252--1259, European Society for Composite Materials (ESCM), Jul 2, 2024. [PUMA: area_architectures topic_engineering Convolutional Direct FIS_scads Fiber Machine Strain dependency, identification, learning, networks, neural parameter plastics rate reinforced] URL

Najia Ahmadi, Quang Vu Nguyen, Martin Sedlmayr, and Markus Wolfien. A comparative patient-level prediction study in OMOP CDM: applicative potential and insights from synthetic data. Scientific reports, (14)1Nature Publishing Group, Jan 27, 2024. [PUMA: Databases, Electronic FIS_scads Factual, Health Humans, Informatics, Learning, Machine Medical Records topic_lifescience]

Katja Hoffmann, Yuan Peng, Tobias Schlosser, Gabriel Stolze, Holger Langner, Marcel Susky, Trixy Meyer, Marc Ritter, Danny Kowerko, Vinodh Kakkassery, Markus Wolfien, and Martin Sedlmayr. Towards Standardizing Ophthalmic Data for Seamless Interoperability in Eye Care. Studies in health technology and informatics, (317):139--145, IOS Press, Amsterdam u. a., Aug 30, 2024. [PUMA: topic_lifescience Diseases/therapy, Electronic Eye FIS_scads Germany, Health Humans, Information Interoperability/standards, Learning, Level Machine Ophthalmology Records/standards, Seven/standards,]

Praveen Vasudevan, Markus Wolfien, Heiko Lemcke, Cajetan Immanuel Lang, Anna Skorska, Ralf Gaebel, Anne-Marie Galow, Dirk Koczan, Tobias Lindner, Wendy Bergmann, Brigitte Mueller-Hilke, Brigitte Vollmar, Bernd Joachim Krause, Olaf Wolkenhauer, Gustav Steinhoff, and Robert David. CCR2 macrophage response determines the functional outcome following cardiomyocyte transplantation. Genome medicine, (15)1BioMed Central, London, Aug 10, 2023. [PUMA: topic_lifescience Animals, C57BL, Cardiac/metabolism, Cell FIS_scads Immunocompromised, Inbred Infarction, Machine Macrophages, Macrophages/metabolism, Mice, Monocytes/metabolism Myocardial Myocytes, Single-cell, infarction, learning, therapy,]

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F Sbalzarini, and Christian L. Müller. Stability selection enables robust learning of differential equations from limited noisy data. Proceedings of the Royal Society of London : Series A, Mathematical, physical and engineering sciences, (478)2262Royal Society Publishing, June 2022. [PUMA: topic_lifescience FIS_scads PAR differential equations, learning learning, machine proteins, regression, selection, sparse stability statistical theory]

Najdet Charaf, Julian Haase, Adrian Kulisch, Christian Von Elm, and Diana Göhringer. RTASS: a RunTime Adaptable and Scalable System for Network-on-Chip-Based Architectures. 2023 26th Euromicro Conference on Digital System Design (DSD), 585--592, IEEE, Sep 8, 2023. [PUMA: topic_federatedlearn Computer Embedded FIS_scads Machine Runtime, Scalability, Shape algorithms, architecture, computing, learning vision,] URL

Jing Zou, Martin Odening, and Ostap Okhrin. Data-driven determination of plant growth stages for improved weather index insurance design. Agricultural Finance Review, Emerald Group Publishing, Bingley, 2024. [PUMA: topic_engineering FIS_scads Generalized Machine Plant Temporal Weather additive basis growth index insurance learning, model, risk, stages,]

Erik Marx, Clemens Witt, and Thiemo Leonhardt. Identifying Secondary School Students' Misconceptions about Machine Learning: An Interview Study. WiPSCE '24: Proceedings of the 19th WiPSCE Conference on Primary and Secondary Computing Education Research, 1--10, Association for Computing Machinery, Sep 16, 2024. [PUMA: area_responsibleai FIS_scads artificial conceptions intelligence, interview learning, machine mental misconceptions, models, qualitative research, students study,]

Erik Marx, Thiemo Leonhardt, and Nadine Bergner. Brief Summary of Existing Research on Students’ Conceptions of AI. 1--2, October 2022. [PUMA: area_responsibleai FIS_scads artificial beliefs, conceptions, education, ideas, intelligence, k-12 learning, machine mental models, preconceptions]

Maria Carolina Novitasari, Johannes Quaas, and Miguel R. D. Rodrigues. Cloudy with a chance of precision: satellite’s autoconversion rates forecasting powered by machine learning. Environmental Data Science, (3)Cambridge University Press (CUP), 2024. [PUMA: autoconversion forecasting learning machine rates satellite] URL

Aruscha Kramm, Eric Peukert, André Ludwig, and Bogdan Franczyk. Machine Learning Based Mobile Capacity Estimation for Roadside Parking. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (10):99--106, Copernicus GmbH, 2024. [PUMA: Based Capacity Estimation Learning Machine Mobile Parking Roadside]

Oliver Kirsten, Martin Bogdan, and Sophie Adama. Evaluating the DoC-Forest tool for Classifying the State of Consciousness in a Completely Locked-In Syndrome Patient. 2023 7th International Conference on Imaging, Signal Processing and Communications (ICISPC), 37-41, 2023. [PUMA: Complexity Computational Consciousness Information Learning Locked-In Machine Measures Modeling Neuroscience Prediction Predictive Processing Signal Syndrome Theory Training Zno algorithms and data learning modeling models processing]

Sophie Adama, Shang-Ju Wu, Nicoletta Nicolaou, and Martin Bogdan. Extendable hybrid approach to detect conscious states in a CLIS patient using machine learning. SNE Simul. Notes Eur., (32)1:37--45, ARGESIM Arbeitsgemeinschaft Simulation News, 2022. [PUMA: Zno conscious hybrid learning machine patient states {CLIS}]

Ricardo Knauer, and Erik Rodner. Cost-Sensitive Best Subset Selection for Logistic Regression: A Mixed-Integer Conic Optimization Perspective. KI 2023: Advances in Artificial Intelligence: 46th German Conference on AI, Berlin, Germany, September 26--29, 2023, Proceedings, 114--129, Springer-Verlag, Berlin, Heidelberg, 2023. [PUMA: Zno best conic cost-sensitive interpretable learning machine meta-learning mixed-integer optimization selection subset]

Akshay Akshay, Masoud Abedi, Navid Shekarchizadeh, Fiona C Burkhard, Mitali Katoch, Alex Bigger-Allen, Rosalyn M Adam, Katia Monastyrskaya, and Ali Hashemi Gheinani. MLcps: machine learning cumulative performance score for classification problems. GigaScience, (12):giad108, December 2023. [PUMA: MLcps Xack Yaff cumulative learning machine performance] URL