Publications

Mersedeh Sadeghi, Daniel Pöttgen, Patrick Ebel, und Andreas Vogelsang. Explaining the Unexplainable: The Impact of Misleading Explanations on Trust in Unreliable Predictions for Hardly Assessable Tasks. Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, 36–46, Association for Computing Machinery, New York, NY, USA, 2024. [PUMA: topic_visualcomputing XAI, explainability, learning, machine trust] URL

Veronia Iskandar, Mohamed A. Abd El Ghany, und Diana Goehringer. NDP-RANK: Prediction and ranking of NDP systems performance using machine learning. Microprocessors and Microsystems, (96):104707, 2023. [PUMA: topic_federatedlearn Design Machine Modeling, Near-data Prediction, exploration learning, processing, space] URL

Frank Cichos, Santiago Mui�os Landin, und Ravi Pradip. Chapter 5 - Artificial intelligence (AI) enhanced nanomotors and active matter. In Yuebing Zheng, und Zilong Wu (Hrsg.), Intelligent Nanotechnology, 113--144, Elsevier, 2023. [PUMA: topic_physchemistry Active Feedback Machine Multi Optical Reinforcement agent control control, learning, particles, reinforcement] URL

Johannes Gerritzen, Andreas Hornig, Peter Winkler, und Maik Gude. A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP. Computational Materials Science, (244 (2024))Elsevier Science B.V., September 2024. [PUMA: area_architectures topic_engineering Constitutive FIS_scads Fiber Machine Neural Parameter identification learning, modeling, networks, plastics, reinforced]

Johannes Gerritzen, Andreas Hornig, Peter Winkler, und Maik Gude. Direct parameter identification for highly nonlinear strain rate dependent constitutive models using machine learning. ECCM21 - Proceedings of the 21st European Conference on Composite Materials, (3):1252--1259, European Society for Composite Materials (ESCM), 02.07.2024. [PUMA: area_architectures topic_engineering Convolutional Direct FIS_scads Fiber Machine Strain dependency, identification, learning, networks, neural parameter plastics rate reinforced] URL

Najia Ahmadi, Quang Vu Nguyen, Martin Sedlmayr, und Markus Wolfien. A comparative patient-level prediction study in OMOP CDM: applicative potential and insights from synthetic data. Scientific reports, (14)1Nature Publishing Group, 27.01.2024. [PUMA: Databases, Electronic FIS_scads Factual, Health Humans, Informatics, Learning, Machine Medical Records topic_lifescience]

Katja Hoffmann, Yuan Peng, Tobias Schlosser, Gabriel Stolze, Holger Langner, Marcel Susky, Trixy Meyer, Marc Ritter, Danny Kowerko, Vinodh Kakkassery, Markus Wolfien, und Martin Sedlmayr. Towards Standardizing Ophthalmic Data for Seamless Interoperability in Eye Care. Studies in health technology and informatics, (317):139--145, IOS Press, Amsterdam u. a., 30.08.2024. [PUMA: topic_lifescience Diseases/therapy, Electronic Eye FIS_scads Germany, Health Humans, Information Interoperability/standards, Learning, Level Machine Ophthalmology Records/standards, Seven/standards,]

Praveen Vasudevan, Markus Wolfien, Heiko Lemcke, Cajetan Immanuel Lang, Anna Skorska, Ralf Gaebel, Anne-Marie Galow, Dirk Koczan, Tobias Lindner, Wendy Bergmann, Brigitte Mueller-Hilke, Brigitte Vollmar, Bernd Joachim Krause, Olaf Wolkenhauer, Gustav Steinhoff, und Robert David. CCR2 macrophage response determines the functional outcome following cardiomyocyte transplantation. Genome medicine, (15)1BioMed Central, London, 10.08.2023. [PUMA: topic_lifescience Animals, C57BL, Cardiac/metabolism, Cell FIS_scads Immunocompromised, Inbred Infarction, Machine Macrophages, Macrophages/metabolism, Mice, Monocytes/metabolism Myocardial Myocytes, Single-cell, infarction, learning, therapy,]

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F Sbalzarini, und Christian L. Müller. Stability selection enables robust learning of differential equations from limited noisy data. Proceedings of the Royal Society of London : Series A, Mathematical, physical and engineering sciences, (478)2262Royal Society Publishing, Juni 2022. [PUMA: topic_lifescience FIS_scads PAR differential equations, learning learning, machine proteins, regression, selection, sparse stability statistical theory]

Jing Zou, Martin Odening, und Ostap Okhrin. Data-driven determination of plant growth stages for improved weather index insurance design. Agricultural Finance Review, Emerald Group Publishing, Bingley, 2024. [PUMA: topic_engineering FIS_scads Generalized Machine Plant Temporal Weather additive basis growth index insurance learning, model, risk, stages,]

Erik Marx, Clemens Witt, und Thiemo Leonhardt. Identifying Secondary School Students' Misconceptions about Machine Learning: An Interview Study. WiPSCE '24: Proceedings of the 19th WiPSCE Conference on Primary and Secondary Computing Education Research, 1--10, Association for Computing Machinery, 16.09.2024. [PUMA: area_responsibleai FIS_scads artificial conceptions intelligence, interview learning, machine mental misconceptions, models, qualitative research, students study,]

Erik Marx, Thiemo Leonhardt, und Nadine Bergner. Brief Summary of Existing Research on Students’ Conceptions of AI. 1--2, Oktober 2022. [PUMA: area_responsibleai FIS_scads artificial beliefs, conceptions, education, ideas, intelligence, k-12 learning, machine mental models, preconceptions]