Publications

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, and Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: a disease; HCC, or intelligence; liver multivariable non-alcoholic multimodal ML, artificial WSIs, images; prediction support integration TACE, DICOM, AI, network; deep neural Digital Diagnosis; MVI, transarterial fatty topic_lifescience microvascular convolutional in learning; imaging; Communications invasion; NAFLD, chemoembolisation; hepatocellular Reporting steatohepatitis; Transparent Individual slide machine Prognosis Artificial data for NASH, whole Medicine; TRIPOD, of CNN, and Imaging carcinoma; diagnostic system; model]

Qinghe Zeng, Christophe Klein, Stefano Caruso, Pascale Maille, Narmin Ghaffari Laleh, Daniele Sommacale, Alexis Laurent, Giuliana Amaddeo, David Gentien, Audrey Rapinat, Hélène Regnault, Cécile Charpy, Cong Trung Nguyen, Christophe Tournigand, Raffaele Brustia, Jean Michel Pawlotsky, Jakob Nikolas Kather, Maria Chiara Maiuri, Nicolas Loménie, and Julien Calderaro. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol., (77)1:116--127, Elsevier BV, July 2022. [PUMA: image artificial immune intelligence; pathology; gene deep learning; signatures; slide topic_lifescience whole]

Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J Brinker, Christian Trautwein, Nadine T Gaisa, and Jakob N Kather. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: A possible preselection for molecular testing?. Eur. Urol. Focus, (8)2:472--479, Elsevier BV, March 2022. [PUMA: Artificial intelligence; learning; therapy for Deep mutations; Bladder cancer; Molecular fibroblast receptor testing topic_lifescience growth factor FGFR3]

Lorenzo Maiello, Lorenzo Ball, Marco Micali, Francesca Iannuzzi, Nico Scherf, Ralf-Thorsten Hoffmann, Marcelo Gama de Abreu, Paolo Pelosi, and Robert Huhle. Automatic lung segmentation and quantification of aeration in computed tomography of the chest using 3D transfer learning. Front. Physiol., (12):725865, 2021. [PUMA: ARDS; index; recruitment; segmentation; uNet transfer lung deep learning; COVID-19; Jaccard]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, and Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, July 2022. [PUMA: Convolutional Artificial intelligence; Multiple-Instance deep neural networks; learning Weakly-supervised Learning; transformers; pathology; topic_lifescience Vision Computational]

Anderson P. Avila Santos, Breno L. S. de Almeida, Robson P. Bonidia, Peter F. Stadler, Polonca Stefanic, Ines Mandic-Mulec, Ulisses Rocha, Danilo S. Sanches, and André C.P.L.F. de Carvalho. BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification. RNA Biology, (21)1:410–421, Informa UK Limited, March 2024. [PUMA: deep RNA non-coding feature learning extraction BioDeepfuse classification] URL

Scarlet Brockmoeller, Amelie Echle, Narmin Ghaffari Laleh, Susanne Eiholm, Marie Louise Malmstrøm, Tine Plato Kuhlmann, Katarina Levic, Heike Irmgard Grabsch, Nicholas P West, Oliver Lester Saldanha, Katerina Kouvidi, Aurora Bono, Lara R Heij, Titus J Brinker, Ismayil Gögenür, Philip Quirke, and Jakob Nikolas Kather. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J. Pathol., (256)3:269--281, Wiley, March 2022. [PUMA: metastasis; inflamed intelligence; deep learning; bowel predictive LNM adipose pT2 pT1 digital biomarker; cancer; artificial AI; pathology; colorectal and topic_lifescience prediction new tissue; early]

Ali Al-Fatlawi, Negin Malekian, Sebastián Garc\'ıa, Andreas Henschel, Ilwook Kim, Andreas Dahl, Beatrix Jahnke, Peter Bailey, Sarah Naomi Bolz, Anna R Poetsch, Sandra Mahler, Robert Grützmann, Christian Pilarsky, and Michael Schroeder. Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers (Basel), (13)11:2654, MDPI AG, May 2021. [PUMA: cancer; pancreatitis; study transcriptome-wide deep learning; topic_lifescience association pancreatic chronic]

Ravi Pradip, and Frank Cichos. Deep reinforcement learning with artificial microswimmers. Emerging Topics in Artificial Intelligence (ETAI) 2022, (12204):104--110, 2022. [PUMA: microswimmers artificial learning topic_physchemistry reinforcement Deep]

Jordan Richards, Raphaël Huser, Emanuele Bevacqua, and Jakob Zscheischler. Insights into the Drivers and Spatiotemporal Trends of Extreme Mediterranean Wildfires with Statistical Deep Learning. Artificial Intelligence for the Earth Systems, (2)4American Meteorological Society, October 2023. [PUMA: Mediterranean Extreme Learning Wildfires Spatiotemporal Trends Statistical Deep] URL

Benjamin P Brown, Oanh Vu, Alexander R Geanes, Sandeepkumar Kothiwale, Mariusz Butkiewicz, Edward W Lowe, Jr, Ralf Mueller, Richard Pape, Jeffrey Mendenhall, and Jens Meiler. Introduction to the BioChemical Library (BCL): An application-based open-source toolkit for integrated cheminformatics and machine learning in computer-aided drug discovery. Front. Pharmacol., (13):833099, Frontiers Media SA, February 2022. [PUMA: discovery; library; cheminformatics; deep network; neural biochemical open-source BCL; drug design; topic_lifescience QSAR;]

Daniel Bühler, Nicole Power Guerra, Luisa Müller, Olaf Wolkenhauer, Martin Düffer, Brigitte Vollmar, Angela Kuhla, and Markus Wolfien. Leptin deficiency-caused behavioral change - A comparative analysis using EthoVision and DeepLabCut. Frontiers in neuroscience, (17)Frontiers Media S.A., Mar 24, 2023. [PUMA: FIS_scads Obesity Behavioral learning, topic_lifescience EthoVision, analysis, DeepLabCut, Deep]

Chen Liu, Guillaume Bellec, Bernhard Vogginger, David Kappel, Johannes Partzsch, Felix Neumärker, Sebastian Höppner, Wolfgang Maass, Steve B Furber, Robert Legenstein, and Christian G Mayr. Memory-efficient deep learning on a SpiNNaker 2 prototype. Front. Neurosci., (12):840, Frontiers Media SA, November 2018. [PUMA: footprint; energy parallelism; memory pruning; SpiNNaker; efficient deep hardware; sparsity rewiring;]

Roman C Maron, Achim Hekler, Sarah Haggenmüller, Christof von Kalle, Jochen S Utikal, Verena Müller, Maria Gaiser, Friedegund Meier, Sarah Hobelsberger, Frank F Gellrich, Mildred Sergon, Axel Hauschild, Lars E French, Lucie Heinzerling, Justin G Schlager, Kamran Ghoreschi, Max Schlaak, Franz J Hilke, Gabriela Poch, Sören Korsing, Carola Berking, Markus V Heppt, Michael Erdmann, Sebastian Haferkamp, Dirk Schadendorf, Wiebke Sondermann, Matthias Goebeler, Bastian Schilling, Jakob N Kather, Stefan Fröhling, Daniel B Lipka, Eva Krieghoff-Henning, and Titus J Brinker. Model soups improve performance of dermoscopic skin cancer classifiers. Eur. J. Cancer, (173):307--316, Elsevier BV, September 2022. [PUMA: Artificial intelligence; learning; Deep Melanoma; soups; Dermatology; Robustness Calibration; Ensembles; topic_lifescience Model Generalisation; Nevus;]

Vincent D. Friedrich, Peter Pennitz, Emanuel Wyler, Julia M. Adler, Dylan Postmus, Kristina Müller, Luiz Gustavo Teixeira Alves, Julia Prigann, Fabian Pott, Daria Vladimirova, Thomas Hoefler, Cengiz Goekeri, Markus Landthaler, Christine Goffinet, Antoine-Emmanuel Saliba, Markus Scholz, Martin Witzenrath, Jakob Trimpert, Holger Kirsten, and Geraldine Nouailles. Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. eBioMedicine, (108):105312, 2024. [PUMA: Disease Cross-species model, learning Deep matching, Single-cell RNA-seq, topic_mathfoundation COVID-19, analysis, state Hamster] URL

Chiara Maria Lavinia Loeffler, Nadine T Gaisa, Hannah Sophie Muti, Marko van Treeck, Amelie Echle, Narmin Ghaffari Laleh, Christian Trautwein, Lara R Heij, Heike I Grabsch, Nadina Ortiz Bruechle, and Jakob Nikolas Kather. Predicting mutational status of driver and suppressor genes directly from histopathology with Deep Learning: A systematic study across 23 solid tumor types. Front. Genet., (12):806386, 2021. [PUMA: genetic artificail (AI); pathway; deep learning; cancer genes; pathway TCGA; intelligence]

Niklas Paulig, and Ostap Okhrin. Robust path following on rivers using bootstrapped reinforcement learning. Ocean engineering, (298)Elsevier Science B.V., Apr 15, 2024. [PUMA: FIS_scads Path waterways Autonomous Restricted learning, surface vessel, reinforcement Deep topic_engineering following,]

Martin Waltz, Ostap Okhrin, and Michael Schultz. Self-organized free-flight arrival for urban air mobility. Transportation Research Part C: Emerging Technologies, (167):104806, 2024. [PUMA: Urban mobility eVTOL air learning reinforcement Deep topic_engineering] URL

Neringa Jurenaite, Daniel Leon-Perinan, Veronika Donath, Sunna Torge, and Rene Jakel. SetQuence & SetOmic: Deep Set Transformer-based Representations of Cancer Multi-Omics. 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2022, 139--147, IEEE, New York u. a., United States of America, 2022. [PUMA: FIS_scads Set processing, gene expression, natural language molecular livinglab genome, Deep sequence topic_federatedlearn multi-omics, mutome, Representations analysis, Network, Neural]

Martin Waltz, and Ostap Okhrin. Spatial–temporal recurrent reinforcement learning for autonomous ships. Neural Networks, (2023)165:634--653, Elsevier Science B.V., Jun 15, 2023. [PUMA: FIS_scads Networks, Autonomous surface Computer, Recurrency, Deep vehicle, COLREG, learning, Algorithms, Psychology, Ships, Reward reinforcement topic_engineering Neural Reinforcement,]