Publications

Akshay Akshay, Mitali Katoch, Navid Shekarchizadeh, Masoud Abedi, Ankush Sharma, Fiona C Burkhard, Rosalyn M Adam, Katia Monastyrskaya, and Ali Hashemi Gheinani. Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis. Gigascience, (13)January 2024. [PUMA: problems; topic_federatedlearn visualization learning; data machine analysis; AutoML; classification]

Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm selection: Survey and perspectives. Evol. Comput., (27)1:3--45, MIT Press, 2019. [PUMA: feature-based learning; metalearning data analysis; optimisation; automated streams.; exploratory combinatorial continuous machine approaches; Automated selection; algorithm configuration; landscape]

Oliver Kirsten, Martin Bogdan, and Sophie Adama. Evaluating the DoC-Forest tool for Classifying the State of Consciousness in a Completely Locked-In Syndrome Patient. 2023 7th International Conference on Imaging, Signal Processing and Communications (ICISPC), 37-41, 2023. [PUMA: models Consciousness Prediction Syndrome Predictive processing modeling Theory algorithms data learning Information Modeling Complexity Processing Machine Learning Training Neuroscience Measures and Locked-In Zno Signal Computational]

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, and Christian L. Müller. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv, 2019. [PUMA: (physics.data-an), Analysis, Probability Data sciences, Numerical Statistics FOS: Machine Physical sciences Analysis (cs.LG), Learning (math.NA), Mathematics, and Computer information] URL

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, and Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: a disease; HCC, or intelligence; liver multivariable non-alcoholic multimodal ML, artificial WSIs, images; prediction support integration TACE, DICOM, AI, network; deep neural Digital Diagnosis; MVI, transarterial fatty topic_lifescience microvascular convolutional in learning; imaging; Communications invasion; NAFLD, chemoembolisation; hepatocellular Reporting steatohepatitis; Transparent Individual slide machine Prognosis Artificial data for NASH, whole Medicine; TRIPOD, of CNN, and Imaging carcinoma; diagnostic system; model]