Publications

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, and Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: AI, Artificial CNN, Communications DICOM, Diagnosis; Digital HCC, Imaging Individual ML, MVI, Medicine; NAFLD, NASH, Prognosis Reporting TACE, TRIPOD, Transparent WSIs, a and artificial carcinoma; chemoembolisation; convolutional data deep diagnostic disease; fatty for hepatocellular images; imaging; in integration intelligence; invasion; learning; liver machine microvascular model multimodal multivariable network; neural non-alcoholic of or prediction slide steatohepatitis; support system; transarterial whole]

Bian Li, Jeffrey Mendenhall, John A Capra, and Jens Meiler. A multitask deep-learning method for predicting membrane associations and secondary structures of proteins. J. Proteome Res., (20)8:4089--4100, American Chemical Society (ACS), August 2021. [PUMA: convolutional deep learning; long memory multitask networks; neural prediction prediction; secondary short-term structure topic_lifescience topology transmembrane]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, and Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, July 2022. [PUMA: Artificial Computational Convolutional Learning; Multiple-Instance Vision Weakly-supervised deep intelligence; learning networks; neural pathology; transformers;]

Lucas Schneider, Sara Laiouar-Pedari, Sara Kuntz, Eva Krieghoff-Henning, Achim Hekler, Jakob N Kather, Timo Gaiser, Stefan Fröhling, and Titus J Brinker. Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur. J. Cancer, (160):80--91, Elsevier BV, January 2022. [PUMA: Biomarker Cancer; Convolutional Multimodal Omics fusion; identification; networks; neural topic_lifescience]

Veronika Scholz, Peter Winkler, Andreas Hornig, Maik Gude, and Angelos Filippatos. Structural damage identification of composite rotors based on fully connected neural networks and convolutional neural networks. Sensors (Basel), (21)6:2005, MDPI AG, March 2021. [PUMA: (SHM) composite composites; connected convolutional dense fully health learning; machine monitoring networks; neural rotors; structural]

Mariia Tkachenko, Claire Chalopin, Boris Jansen-Winkeln, Thomas Neumuth, Ines Gockel, and Marianne Maktabi. Impact of pre- and post-processing steps for supervised classification of colorectal cancer in hyperspectral images. Cancers (Basel), (15)7April 2023. [PUMA: cancer cancer; classification; colorectal convolutional filter; hyperspectral imaging; learning; machine median networks; post-processing; pre-processing]