Publications

Maksim Kukushkin, Martin Bogdan, and Thomas Schmid. On optimizing morphological neural networks for hyperspectral image classification. In Wolfgang Osten (Eds.), Sixteenth International Conference on Machine Vision (ICMV 2023), (13072):1307202, SPIE, 2024. [PUMA: classification computer deep hyperspectral image learning mathematical morphological morphology networks neuronal nopdf remote sensing vision] URL

Andre de Carvalho, Robson Bonidia, Jude Dzevela Kong, Mariana Dauhajre, Claudio Struchiner, Guilherme Goedert, Peter F. Stadler, Maria Emilia Walter, Danilo Sanches, Troy Day, Marcia Castro, John Edmunds, Manuel Colome-Hidalgo, Demian Arturo Herrera Morban, Edian F. Franco, Cesar Ugarte-Gil, Patricia Espinoza-Lopez, Gabriel Carrasco-Escobar, and Ulisses Rocha. Democratising Artificial Intelligence for Pandemic Preparedness and Global Governance in Latin American and Caribbean Countries. arXiv, 2024. [PUMA: Computer FOS Intelligence and information sciences zno artificial] URL

Markus Bauer, and Christoph Augenstein. Can Unlabelled Data Improve AI Applications? A Comparative Study on Self-Supervised Learning in Computer Vision.. Proceedings of the 18th Conference on Computer Science and Intelligence Systems, (35):93–101, IEEE, September 2023. [PUMA: Comparative Computer Self-Supervised Study Unlabelled Vision yaff data learning] URL

Lucas Lange, Maurice-Maximilian Heykeroth, and Erhard Rahm. Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning. arXiv preprint arXiv:2409.01329, arXiv, September 2024. [PUMA: (cs.CR) (cs.CV) (cs.LG) Computer Cryptography FOS Pattern Recognition Security Vision area_bigdata area_responsibleai ep information learning machine sciences xack yaff]

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, and Christian L. Müller. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv, 2019. [PUMA: (cs.LG) (math.NA) (physics.data-an) Analysis Computer FOS Mathematics Numerical Physical Probability Statistics data information learning machine sciences xack] URL

Kim Breitwieser, Allison Lahnala, Charles Welch, Lucie Flek, and Martin Potthast. Modeling Proficiency with Implicit User Representations. arXiv, 2021. [PUMA: (cs.CL) Computation Computer FOS Language and information sciences zno] URL

Marianne Maktabi, Hannes Köhler, Magarita Ivanova, Thomas Neumuth, Nada Rayes, Lena Seidemann, Robert Sucher, Boris Jansen-Winkeln, Ines Gockel, Manuel Barberio, and Claire Chalopin. Classification of hyperspectral endocrine tissue images using support vector machines. Int. J. Med. Robot., (16)5:1--10, Wiley, October 2020. [PUMA: assisted computer guided head imaged imaging intraoperative neck surgery thyroidectomy zno]

Katja Hoffmann, Katja Cazemier, Christoph Baldow, Silvio Schuster, Yuri Kheifetz, Sibylle Schirm, Matthias Horn, Thomas Ernst, Constanze Volgmann, Christian Thiede, Andreas Hochhaus, Martin Bornhäuser, Meinolf Suttorp, Markus Scholz, Ingmar Glauche, Markus Loeffler, and Ingo Roeder. Integration of mathematical model predictions into routine workflows to support clinical decision making in haematology. BMC Med. Inform. Decis. Mak., (20)1:28, February 2020. [PUMA: Clinical Computer Haematology Individual Mathematical Model-based Routine Support decision-making management modelling optimization planning simulation system therapy treatment workflow zno data]