Publications

Julián Méndez, Marc Satkowski, und Rufat Rzayev. How Does Explainability Look in Hybrid User Interfaces?. 2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 251--256, 2023. [PUMA: artificial Visual sciences;Artificial intelligence;hybrid interfaces;Complexity analytics;Medical services;Games;User intelligence;explainable reality theory;Behavioral user interfaces;mixed]

Roman C Maron, Achim Hekler, Sarah Haggenmüller, Christof von Kalle, Jochen S Utikal, Verena Müller, Maria Gaiser, Friedegund Meier, Sarah Hobelsberger, Frank F Gellrich, Mildred Sergon, Axel Hauschild, Lars E French, Lucie Heinzerling, Justin G Schlager, Kamran Ghoreschi, Max Schlaak, Franz J Hilke, Gabriela Poch, Sören Korsing, Carola Berking, Markus V Heppt, Michael Erdmann, Sebastian Haferkamp, Dirk Schadendorf, Wiebke Sondermann, Matthias Goebeler, Bastian Schilling, Jakob N Kather, Stefan Fröhling, Daniel B Lipka, Eva Krieghoff-Henning, und Titus J Brinker. Model soups improve performance of dermoscopic skin cancer classifiers. Eur. J. Cancer, (173):307--316, Elsevier BV, September 2022. [PUMA: Artificial intelligence; learning; Deep Melanoma; soups; Dermatology; Robustness Calibration; Ensembles; topic_lifescience Model Generalisation; Nevus;]

Didem Cifci, Sebastian Foersch, und Jakob Nikolas Kather. Artificial intelligence to identify genetic alterations in conventional histopathology. J. Pathol., (257)4:430--444, Wiley, Juli 2022. [PUMA: image artificial oncology intelligence; precision analysis; biomarker;]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, und Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, Juli 2022. [PUMA: Convolutional Artificial intelligence; Multiple-Instance deep neural networks; learning Weakly-supervised Learning; transformers; pathology; Vision Computational]

Qinghe Zeng, Christophe Klein, Stefano Caruso, Pascale Maille, Narmin Ghaffari Laleh, Daniele Sommacale, Alexis Laurent, Giuliana Amaddeo, David Gentien, Audrey Rapinat, Hélène Regnault, Cécile Charpy, Cong Trung Nguyen, Christophe Tournigand, Raffaele Brustia, Jean Michel Pawlotsky, Jakob Nikolas Kather, Maria Chiara Maiuri, Nicolas Loménie, und Julien Calderaro. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol., (77)1:116--127, Elsevier BV, Juli 2022. [PUMA: image artificial immune intelligence; pathology; gene deep learning; signatures; slide whole]

Céline N Heinz, Amelie Echle, Sebastian Foersch, Andrey Bychkov, und Jakob Nikolas Kather. The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups. Histopathology, (80)7:1121--1127, Wiley, Juni 2022. [PUMA: artificial intelligence; pathology; survey digital]

Katja Hauser, Alexander Kurz, Sarah Haggenmüller, Roman C Maron, Christof von Kalle, Jochen S Utikal, Friedegund Meier, Sarah Hobelsberger, Frank F Gellrich, Mildred Sergon, Axel Hauschild, Lars E French, Lucie Heinzerling, Justin G Schlager, Kamran Ghoreschi, Max Schlaak, Franz J Hilke, Gabriela Poch, Heinz Kutzner, Carola Berking, Markus V Heppt, Michael Erdmann, Sebastian Haferkamp, Dirk Schadendorf, Wiebke Sondermann, Matthias Goebeler, Bastian Schilling, Jakob N Kather, Stefan Fröhling, Daniel B Lipka, Achim Hekler, Eva Krieghoff-Henning, und Titus J Brinker. Explainable artificial intelligence in skin cancer recognition: A systematic review. Eur. J. Cancer, (167):54--69, Elsevier BV, Mai 2022. [PUMA: Systematic Artificial Dermatology; intelligence; topic_lifescience Man-machine review Skin neoplasms; systems;]

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, und Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: a disease; HCC, or intelligence; liver multivariable non-alcoholic multimodal ML, artificial WSIs, images; prediction support integration TACE, DICOM, AI, network; deep neural Digital Diagnosis; MVI, transarterial fatty microvascular convolutional in learning; imaging; Communications invasion; NAFLD, chemoembolisation; hepatocellular Reporting steatohepatitis; Transparent Individual slide machine Prognosis Artificial data for NASH, whole Medicine; TRIPOD, of CNN, and Imaging carcinoma; diagnostic system; model]

Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J Brinker, Christian Trautwein, Nadine T Gaisa, und Jakob N Kather. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: A possible preselection for molecular testing?. Eur. Urol. Focus, (8)2:472--479, Elsevier BV, März 2022. [PUMA: Artificial intelligence; learning; therapy for Deep mutations; Bladder cancer; Molecular fibroblast receptor testing growth factor FGFR3]

Scarlet Brockmoeller, Amelie Echle, Narmin Ghaffari Laleh, Susanne Eiholm, Marie Louise Malmstrøm, Tine Plato Kuhlmann, Katarina Levic, Heike Irmgard Grabsch, Nicholas P West, Oliver Lester Saldanha, Katerina Kouvidi, Aurora Bono, Lara R Heij, Titus J Brinker, Ismayil Gögenür, Philip Quirke, und Jakob Nikolas Kather. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J. Pathol., (256)3:269--281, Wiley, März 2022. [PUMA: metastasis; inflamed intelligence; deep learning; bowel predictive LNM adipose pT2 pT1 digital biomarker; cancer; artificial AI; pathology; colorectal and prediction new tissue; early]

Peter Leonard Schrammen, Narmin Ghaffari Laleh, Amelie Echle, Daniel Truhn, Volkmar Schulz, Titus J Brinker, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Alexander Brobeil, Matthias Kloor, Lara R Heij, Dirk Jäger, Christian Trautwein, Heike I Grabsch, Philip Quirke, Nicholas P West, Michael Hoffmeister, und Jakob Nikolas Kather. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J. Pathol., (256)1:50--60, Wiley, Januar 2022. [PUMA: Lynch intelligence; deep learning; digital instability cancer; artificial syndrome; pathology; colorectal microsatellite computational]

Ravi Pradip, und Frank Cichos. Deep reinforcement learning with artificial microswimmers. Emerging Topics in Artificial Intelligence (ETAI) 2022, (12204):104--110, 2022. [PUMA: microswimmers artificial learning reinforcement Deep]

Jana Riedel, und Julia Kleppsch. Wie bereit sind Studierende für die Nutzung von KI-Technologien? Eine Annäherung an die KI-Readiness Studierender im Kontext des Projektes "tech4comp". Waxmann : Münster ; New York, 2021. [PUMA: Human Bewertung, Empirical Mediennutzung, Lernprozess, Untersuchung, Use Activities), und Qualitative Hochschullehre, institute, intelligence, being, Project, student, Vergleich, Bildungswesen, Projekt, process, Judgment, Medien, research Erziehung, Mensch, Judgement, Utilisation Student, Forschung, Nachteil, Hochschule, Empirische Technologie, Vorteil, Education, Utilization Assessment, Intelligenz, University media, Higher Schul- Artificial Medieneinsatz, (Learning Deployment Male Projects 370 education K\"{u}nstliche Technology, teaching, lecturing, Learning Digitale study, of] URL