Publications

Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, und Christoph Jacobi. A Physics-informed Deep Learning Based Clustering to Investigate the Impact of Regional European Radiative Forcing on Arctic Climate and Upper Atmospheric Dynamics. EGU24-16391Copernicus Meetings, 2024. [PUMA: imported topic_earthenvironment]

Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, und Christoph Jacobi. Arctic climate response to European radiative forcing: a deep learning study on circulation pattern changes. Weather and Climate Dynamics, (5)4:1223-1268, Copernicus Publications, 2024. [PUMA: imported topic_earthenvironment]

Maria C Novitasari, Johannes Quaas, und Miguel Rodrigues. ALAS: Active Learning for Autoconversion Rates Prediction from Satellite Data. 3358-3366, PMLR, 2024. [PUMA: imported topic_earthenvironment]

Julien Lenhardt, Johannes Quaas, Dino Sejdinovic, und Daniel Klocke. CloudViT: classifying cloud types in global satellite data and in kilometre-resolution simulations using vision transformers. EGUsphere, (2024):1-31, Copernicus Publications, 2024. [PUMA: imported topic_earthenvironment]

Julien Lenhardt, Johannes Quaas, und Dino Sejdinovic. Marine cloud base height retrieval from MODIS cloud properties using machine learning. Atmospheric Measurement Techniques, (17)18:5655-5677, Copernicus Publications, 2024. [PUMA: imported topic_earthenvironment]

Maria Carolina Novitasari, Johannes Quaas, und Miguel RD Rodrigues. Cloudy with a chance of precision: satellite’s autoconversion rates forecasting powered by machine learning. Environmental Data Science, (3):e23, Cambridge University Press, 2024. [PUMA: imported topic_earthenvironment]

Julien Lenhardt, Johannes Quaas, Dino Sejdinovic, und Daniel Klocke. Leveraging surface observations and passive satellite retrievals of cloud properties: Applications to cloud type classification and cloud base height retrieval. EGU24-18214Copernicus Meetings, 2024. [PUMA: imported topic_earthenvironment]

Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, und Christoph Jacobi. Arctic Climate Response to European Radiative Forcing: A Deep Learning Approach. EGUsphere, (2024):1-55, Copernicus Publications, 2024. [PUMA: imported topic_earthenvironment]

Louise Cavalcante, David W Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, und Pieter van Oel. From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications. EGUsphere, (2024):1-20, Copernicus Publications, 2024. [PUMA: imported topic_earthenvironment]

Francisco Assis Souza Filho, Ticiana Marinho Carvalho Studart, Joao Dehon Pontes Filho, Eduardo Sávio Passos Rodrigues Martins, Sergio Rodrigues Ayrimoraes, Carlos Alberto Perdigão Pessoa, Larissa Zaira Rafael Rolim, Luiz Martins Araujo Junior, Samiria Maria Oliveira Silva, Taís Maria Nunes Carvalho, und Sandra Helena Silva Aquino. Integrated proactive drought management in hydrosystems and cities: building a nine-step participatory planning methodology. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, (115)3:2179-2204, Springer & International Society for the Prevention and Mitigation of Natural Hazards, 2023. [PUMA: imported topic_earthenvironment]

Taís Maria Nunes Carvalho, Francisco de Assis de Souza Filho, und Mariana Madruga de Brito. Water management assessment with text mining. EGU General Assembly Conference Abstracts, EGU-8349, 2023. [PUMA: imported topic_earthenvironment]

Taís Maria Nunes Carvalho, und Francisco de Assis de Souza Filho. Variational Mode Decomposition Hybridized With Gradient Boost Regression for Seasonal Forecast of Residential Water Demand. Water Resources Management, (35)10:3431-3445, Springer Netherlands, 2021. [PUMA: imported topic_earthenvironment]

Thaís Antero de Oliveira, Francisco de Assis de Souza Filho, Gabriela de Azevedo Reis, und Taís Maria Nunes Carvalho. Identification of correlation between residential water demand and average income using the pool regression model: Study case in Fortaleza-Brazil. Water Utility Journal, 2020. [PUMA: imported topic_earthenvironment]

GA Reis, FA Souza Filho, RL Frota, LZR Rolim, und TMN Carvalho. Quantifying sensitivity to drought: Study case in São Paulo and Ceará, Brazil. 2019. [PUMA: imported topic_earthenvironment]

Taís Maria Nunes Carvalho, und Francisco de Assis de Souza Filho. A data-driven model to evaluate the medium-term effect of contingent pricing policies on residential water demand. Environmental Challenges, (3):100033, Elsevier, 2021. [PUMA: imported topic_earthenvironment]

Victor Costa Porto, Francisco de Assis de Souza Filho, Taís Maria Nunes Carvalho, Ticiana Marinho de Carvalho Studart, und Maria Manuela Portela. A GLM copula approach for multisite annual streamflow generation. Journal of Hydrology, (598):126226, Elsevier, 2021. [PUMA: imported topic_earthenvironment]

Taís Maria Nunes Carvalho. Machine Learning for Water Resources Management. 2023. [PUMA: imported topic_earthenvironment]

Tais Maria Nunes Carvalho, Francisco De Assis de Souza Filho, und Marcos Abilio Medeiros de Saboia. Performance of rainwater tanks for runoff reduction under climate change scenarios: a case study in Brazil. Urban Water Journal, (17)10:912-922, Taylor & Francis, 2020. [PUMA: imported topic_earthenvironment]

Ticiana Marinho Carvalho Studart, Eduardo Sávio Passos Rodrigues Martins, Sérgio Rodrigues Ayrimoraes, Carlos Alberto Perdigão Pessoa, Larissa Zaira Rafael Rolim, Luiz Martins Araujo Junior, Samiria Maria Oliveira Silva, Taís Maria Nunes Carvalho, und Sandra Helena Silva Aquino. Integrated proactive drought management in hydrosystems and cities: building a nine-step participatory planning methodology. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, (115)3:2179-2204, Springer, 2023. [PUMA: imported topic_earthenvironment]

LZR Rolim, FA Souza Filho, RV Rocha, GA Reis, und TMN Carvalho. Exploring the relationship between climate indices and hydrological time series using a machine learning approach. 2019. [PUMA: imported topic_earthenvironment]