Publications

Jordan Richards, Raphaël Huser, Emanuele Bevacqua, and Jakob Zscheischler. Insights into the Drivers and Spatiotemporal Trends of Extreme Mediterranean Wildfires with Statistical Deep Learning. Artificial Intelligence for the Earth Systems, (2)4American Meteorological Society, October 2023. [PUMA: Deep Extreme Learning Mediterranean Spatiotemporal Statistical Trends Wildfires zno] URL

Aruscha Kramm, Eric Peukert, André Ludwig, and Bogdan Franczyk. Machine Learning Based Mobile Capacity Estimation for Roadside Parking. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (10):99--106, Copernicus GmbH, 2024. [PUMA: Based Capacity Estimation Learning Machine Mobile Parking Roadside yaff]

Maria Carolina Novitasari, Johannes Quaas, and Miguel R. D. Rodrigues. Cloudy with a chance of precision: satellite’s autoconversion rates forecasting powered by machine learning. Environmental Data Science, (3)Cambridge University Press (CUP), 2024. [PUMA: autoconversion forecasting learning machine rates satellite yaff] URL

Tom Richard Vargis, and Siavash Ghiasvand. A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis using Operational Data Measurement. The International Conference for High Performance Computing, Networking, Storage, and Analysis, Dallas, Texas, USA, January 2022. [PUMA: Cluster Computer Computing, Distributed, Learning Machine Parallel, Science and myOwn] URL

Markus Bauer, and Christoph Augenstein. Can Unlabelled Data Improve AI Applications? A Comparative Study on Self-Supervised Learning in Computer Vision.. Proceedings of the 18th Conference on Computer Science and Intelligence Systems, (35):93–101, IEEE, September 2023. [PUMA: Comparative Computer Data Learning Self-Supervised Study Unlabelled Vision yaff] URL

Oscar J. Pellicer-Valero, Miguel-Ángel Fernández-Torres, Chaonan Ji, Miguel D. Mahecha, and Gustau Camps-Valls. Explainable Earth Surface Forecasting under Extreme Events. arXiv, 2024. [PUMA: (cs.LG), Computer FOS: Learning Machine and information sciences sciences, topic_earthenvironment] URL

Lucas Lange, Maurice-Maximilian Heykeroth, and Erhard Rahm. Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning. arXiv preprint arXiv:2409.01329, arXiv, September 2024. [PUMA: (cs.CR), (cs.CV), (cs.LG), Computer Cryptography FOS: Learning Machine Pattern Recognition Security Vision and area_bigdata area_responsibleai ep information sciences xack yaff]

Ravi Pradip, and Frank Cichos. Deep reinforcement learning with artificial microswimmers. Emerging Topics in Artificial Intelligence (ETAI) 2022, (12204):104--110, 2022. [PUMA: Deep artificial learning microswimmers nopdf reinforcement topic_physchemistry]

Dimitra Kiakou, Adam Adamopoulos, and Nico Scherf. Graph-Based Disease Prediction in Neuroimaging: Investigating the Impact of Feature Selection. Worldwide Congress on “Genetics, Geriatrics and Neurodegenerative Diseases Research", 223--230, 2022. [PUMA: Disease Feature Graph-Based Impact Investigating Neuroimaging Prediction Selection learning topic_neuroinspired yaff]

Lars Muschalski, Joanna Wollmann, Andreas Hornig, and Niels Modler. Steuerung von Compliant-Mechanismen durch Reinforcement Learning. GETRIEBETAGUNG 2022, 121, 2022. [PUMA: Compliant-Mechanismen Learning Reinforcement Steuerung topic_engineering zno]

Martin Waltz, Ostap Okhrin, and Michael Schultz. Self-organized free-flight arrival for urban air mobility. Transportation Research Part C: Emerging Technologies, (167):104806, 2024. [PUMA: Deep Urban air eVTOL learning mobility reinforcement topic_engineering yaff] URL

Fabian Hart, and Ostap Okhrin. Enhanced method for reinforcement learning based dynamic obstacle avoidance by assessment of collision risk. Neurocomputing, (568):127097, 2024. [PUMA: Collision Dynamic Reinforcement Training avoidance environment learning metric obstacle risk topic_engineering zno] URL

Vincent D. Friedrich, Peter Pennitz, Emanuel Wyler, Julia M. Adler, Dylan Postmus, Kristina Müller, Luiz Gustavo Teixeira Alves, Julia Prigann, Fabian Pott, Daria Vladimirova, Thomas Hoefler, Cengiz Goekeri, Markus Landthaler, Christine Goffinet, Antoine-Emmanuel Saliba, Markus Scholz, Martin Witzenrath, Jakob Trimpert, Holger Kirsten, and Geraldine Nouailles. Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. eBioMedicine, (108):105312, 2024. [PUMA: COVID-19, Cross-species Deep Disease Hamster RNA-seq, Single-cell analysis, learning matching, model, state topic_mathfoundation xack yaff] URL

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, and Christian L. Müller. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv, 2019. [PUMA: (cs.LG), (math.NA), (physics.data-an), Analysis Analysis, Computer Data FOS: Learning Machine Mathematics, Numerical Physical Probability Statistics and information sciences sciences, xack] URL

Maik Fröbe, Janek Bevendorff, Jan Heinrich Reimer, Martin Potthast, and Matthias Hagen. Sampling Bias Due to Near-Duplicates in Learning to Rank. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 1997–2000, Association for Computing Machinery, New York, NY, USA, 2020. [PUMA: bias learning near-duplicate-detection, novelty principle, rank, selection to zno] URL

Jana Riedel, and Julia Kleppsch. Wie bereit sind Studierende für die Nutzung von KI-Technologien? Eine Annäherung an die KI-Readiness Studierender im Kontext des Projektes "tech4comp". Waxmann : Münster ; New York, 2021. [PUMA: (Learning 370 Activities), Artificial Assessment, Bewertung, Bildungswesen, Deployment Digitale Education, Empirical Empirische Erziehung, Forschung, Higher Hochschule, Hochschullehre, Human Intelligenz, Judgement, Judgment, K\"{u}nstliche Learning Lernprozess, Male Medien, Medieneinsatz, Mediennutzung, Mensch, Nachteil, Project, Projects Projekt, Qualitative Schul- Student, Technologie, Technology, University Untersuchung, Use Utilisation Utilization Vergleich, Vorteil, being, education institute, intelligence, lecturing, media, of process, research student, study, teaching, und zno] URL

Lummy Maria Monteiro, Joao Saraiva, Rodolfo Toscan, Peter Stadler, Rafael Silva-Rocha, and Ulisses Nunes da Rocha. PredicTF: prediction of bacterial transcription factors in complex microbial communities using deep learning. Environmental Microbiome, (17)December 2022. [PUMA: PredicTF: Zno bacterial complex learning microbialdeep prediction transcription]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, and Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, July 2022. [PUMA: topic_lifescience Artificial Computational Convolutional Learning; Multiple-Instance Vision Weakly-supervised deep intelligence; learning networks; neural pathology; transformers;]

Christopher Klapproth, Rituparno Sen, Peter F Stadler, Sven Findeiß, and Jörg Fallmann. Common features in lncRNA annotation and classification: A survey. Noncoding RNA, (7)4:77, MDPI AG, December 2021. [PUMA: classification coding extraction; feature learning lncRNA; machine problems; sequence;]

Marie Steinacker, Yuri Kheifetz, and Markus Scholz. Individual modelling of haematotoxicity with NARX neural networks: A knowledge transfer approach. Heliyon, (9)7:e17890, Elsevier BV, July 2023. [PUMA: topic_neuroinspired topic_mathfoundation Haematopoiesis; Precision Recurrent System Transfer identification; learning medicine; networks; neural unit_transfer]