Publications

Ravi Pradip, and Frank Cichos. Deep reinforcement learning with artificial microswimmers. Emerging Topics in Artificial Intelligence (ETAI) 2022, (12204):104--110, 2022. [PUMA: topic_physchemistry Deep artificial learning microswimmers reinforcement]

Martin Waltz, Ostap Okhrin, and Michael Schultz. Self-organized free-flight arrival for urban air mobility. Transportation Research Part C: Emerging Technologies, (167):104806, 2024. [PUMA: topic_engineering Deep Urban air eVTOL learning mobility reinforcement] URL

Fabian Hart, Ostap Okhrin, and Martin Treiber. Vessel-following model for inland waterways based on deep reinforcement learning. Ocean Eng., (281)114679:114679, Elsevier BV, August 2023. [PUMA: topic_engineering Vessel-following deep inland learning model reinforcement waterways]

Martin Waltz, and Ostap Okhrin. Spatial–temporal recurrent reinforcement learning for autonomous ships. Neural Networks, (165):634-653, 2023. [PUMA: topic_engineering Autonomous COLREG Deep Recurrency, learning, reinforcement surface vehicle] URL

Niklas Paulig, and Ostap Okhrin. Robust path following on rivers using bootstrapped reinforcement learning. Ocean Engineering, (298):117207, 2024. [PUMA: topic_engineering Autonomous Deep Path Restricted following; learning; reinforcement surface vessel waterways] URL

Vincent D. Friedrich, Peter Pennitz, Emanuel Wyler, Julia M. Adler, Dylan Postmus, Kristina Müller, Luiz Gustavo Teixeira Alves, Julia Prigann, Fabian Pott, Daria Vladimirova, Thomas Hoefler, Cengiz Goekeri, Markus Landthaler, Christine Goffinet, Antoine-Emmanuel Saliba, Markus Scholz, Martin Witzenrath, Jakob Trimpert, Holger Kirsten, and Geraldine Nouailles. Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. eBioMedicine, (108):105312, 2024. [PUMA: topic_mathfoundation COVID-19, Cross-species Deep Disease Hamster RNA-seq, Single-cell analysis, learning matching, model, state] URL

Simon M. Hofmann, Frauke Beyer, Sebastian Lapuschkin, Ole Goltermann, Markus Loeffler, Klaus-Robert Müller, Arno Villringer, Wojciech Samek, and A. Veronica Witte. Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain. NeuroImage, (261):119504, 2022. [PUMA: topic_neuroinspired topic_lifescience Ageing, Brain-age, Cardiovascular Explainable Structural a.i., deep factors, learning mri, risk] URL

Qinghe Zeng, Christophe Klein, Stefano Caruso, Pascale Maille, Narmin Ghaffari Laleh, Daniele Sommacale, Alexis Laurent, Giuliana Amaddeo, David Gentien, Audrey Rapinat, Hélène Regnault, Cécile Charpy, Cong Trung Nguyen, Christophe Tournigand, Raffaele Brustia, Jean Michel Pawlotsky, Jakob Nikolas Kather, Maria Chiara Maiuri, Nicolas Loménie, and Julien Calderaro. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol., (77)1:116--127, Elsevier BV, July 2022. [PUMA: topic_lifescience artificial deep gene image immune intelligence; learning; pathology; signatures; slide whole]

Alexander Kurz, Katja Hauser, Hendrik Alexander Mehrtens, Eva Krieghoff-Henning, Achim Hekler, Jakob Nikolas Kather, Stefan Fröhling, Christof von Kalle, and Titus Josef Brinker. Uncertainty estimation in medical image classification: Systematic review. JMIR Med. Inform., (10)8:e36427, August 2022. [PUMA: topic_lifescience calibration; classification; deep detection; estimation image imaging; learning; medical network out-of-distribution uncertainty]

Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J Brinker, Firas Khader, Daniel Truhn, Nadine T Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, and Jakob Nikolas Kather. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal., (79)102474:102474, Elsevier BV, July 2022. [PUMA: topic_lifescience Artificial Computational Convolutional Learning; Multiple-Instance Vision Weakly-supervised deep intelligence; learning networks; neural pathology; transformers;]

Peter Leonard Schrammen, Narmin Ghaffari Laleh, Amelie Echle, Daniel Truhn, Volkmar Schulz, Titus J Brinker, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Alexander Brobeil, Matthias Kloor, Lara R Heij, Dirk Jäger, Christian Trautwein, Heike I Grabsch, Philip Quirke, Nicholas P West, Michael Hoffmeister, and Jakob Nikolas Kather. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J. Pathol., (256)1:50--60, Wiley, January 2022. [PUMA: topic_lifescience Lynch artificial cancer; colorectal computational deep digital instability intelligence; learning; microsatellite pathology; syndrome;]

Scarlet Brockmoeller, Amelie Echle, Narmin Ghaffari Laleh, Susanne Eiholm, Marie Louise Malmstrøm, Tine Plato Kuhlmann, Katarina Levic, Heike Irmgard Grabsch, Nicholas P West, Oliver Lester Saldanha, Katerina Kouvidi, Aurora Bono, Lara R Heij, Titus J Brinker, Ismayil Gögenür, Philip Quirke, and Jakob Nikolas Kather. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J. Pathol., (256)3:269--281, Wiley, March 2022. [PUMA: topic_lifescience AI; LNM adipose and artificial biomarker; bowel cancer; colorectal deep digital early inflamed intelligence; learning; metastasis; new pT1 pT2 pathology; prediction predictive tissue;]

Roman C Maron, Achim Hekler, Sarah Haggenmüller, Christof von Kalle, Jochen S Utikal, Verena Müller, Maria Gaiser, Friedegund Meier, Sarah Hobelsberger, Frank F Gellrich, Mildred Sergon, Axel Hauschild, Lars E French, Lucie Heinzerling, Justin G Schlager, Kamran Ghoreschi, Max Schlaak, Franz J Hilke, Gabriela Poch, Sören Korsing, Carola Berking, Markus V Heppt, Michael Erdmann, Sebastian Haferkamp, Dirk Schadendorf, Wiebke Sondermann, Matthias Goebeler, Bastian Schilling, Jakob N Kather, Stefan Fröhling, Daniel B Lipka, Eva Krieghoff-Henning, and Titus J Brinker. Model soups improve performance of dermoscopic skin cancer classifiers. Eur. J. Cancer, (173):307--316, Elsevier BV, September 2022. [PUMA: topic_lifescience Artificial Calibration; Deep Dermatology; Ensembles; Generalisation; Melanoma; Model Nevus; Robustness intelligence; learning; soups;]

Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J Brinker, Christian Trautwein, Nadine T Gaisa, and Jakob N Kather. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: A possible preselection for molecular testing?. Eur. Urol. Focus, (8)2:472--479, Elsevier BV, March 2022. [PUMA: topic_lifescience Artificial Bladder Deep FGFR3 Molecular cancer; factor fibroblast for growth intelligence; learning; mutations; receptor testing therapy]

David Nam, Julius Chapiro, Valerie Paradis, Tobias Paul Seraphin, and Jakob Nikolas Kather. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep., (4)4:100443, Elsevier BV, April 2022. [PUMA: topic_lifescience AI, Artificial CNN, Communications DICOM, Diagnosis; Digital HCC, Imaging Individual ML, MVI, Medicine; NAFLD, NASH, Prognosis Reporting TACE, TRIPOD, Transparent WSIs, a and artificial carcinoma; chemoembolisation; convolutional data deep diagnostic disease; fatty for hepatocellular images; imaging; in integration intelligence; invasion; learning; liver machine microvascular model multimodal multivariable network; neural non-alcoholic of or prediction slide steatohepatitis; support system; transarterial whole]

Benjamin P Brown, Oanh Vu, Alexander R Geanes, Sandeepkumar Kothiwale, Mariusz Butkiewicz, Edward W Lowe, Jr, Ralf Mueller, Richard Pape, Jeffrey Mendenhall, and Jens Meiler. Introduction to the BioChemical Library (BCL): An application-based open-source toolkit for integrated cheminformatics and machine learning in computer-aided drug discovery. Front. Pharmacol., (13):833099, Frontiers Media SA, February 2022. [PUMA: topic_lifescience BCL; QSAR; biochemical cheminformatics; deep design; discovery; drug library; network; neural open-source]

Lorenzo Maiello, Lorenzo Ball, Marco Micali, Francesca Iannuzzi, Nico Scherf, Ralf-Thorsten Hoffmann, Marcelo Gama de Abreu, Paolo Pelosi, and Robert Huhle. Automatic lung segmentation and quantification of aeration in computed tomography of the chest using 3D transfer learning. Front. Physiol., (12):725865, 2021. [PUMA: ARDS; COVID-19; Jaccard deep index; learning; lung recruitment; segmentation; transfer uNet]

Bian Li, Jeffrey Mendenhall, John A Capra, and Jens Meiler. A multitask deep-learning method for predicting membrane associations and secondary structures of proteins. J. Proteome Res., (20)8:4089--4100, American Chemical Society (ACS), August 2021. [PUMA: convolutional deep learning; long memory multitask networks; neural prediction prediction; secondary short-term structure topic_lifescience topology transmembrane]

Chen Liu, Guillaume Bellec, Bernhard Vogginger, David Kappel, Johannes Partzsch, Felix Neumärker, Sebastian Höppner, Wolfgang Maass, Steve B Furber, Robert Legenstein, and Christian G Mayr. Memory-efficient deep learning on a SpiNNaker 2 prototype. Front. Neurosci., (12):840, Frontiers Media SA, November 2018. [PUMA: SpiNNaker; deep efficient energy footprint; hardware; memory parallelism; pruning; rewiring; sparsity]

Ali Al-Fatlawi, Negin Malekian, Sebastián Garc\'ıa, Andreas Henschel, Ilwook Kim, Andreas Dahl, Beatrix Jahnke, Peter Bailey, Sarah Naomi Bolz, Anna R Poetsch, Sandra Mahler, Robert Grützmann, Christian Pilarsky, and Michael Schroeder. Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers (Basel), (13)11:2654, MDPI AG, May 2021. [PUMA: association cancer; chronic deep learning; pancreatic pancreatitis; study topic_lifescience transcriptome-wide]