Publications

Maksim Kukushkin, Martin Bogdan, and Thomas Schmid. On optimizing morphological neural networks for hyperspectral image classification. In Wolfgang Osten (Eds.), Sixteenth International Conference on Machine Vision (ICMV 2023), (13072):1307202, SPIE, 2024. [PUMA: classification computer deep hyperspectral image learning mathematical morphological morphology networks neuronal remote sensing vision] URL

Maksim Kukushkin, Martin Bogdan, and Thomas Schmid. On optimizing morphological neural networks for hyperspectral image classification. In Wolfgang Osten (Eds.), Sixteenth International Conference on Machine Vision (ICMV 2023), (13072):1307202, SPIE, 2024. [PUMA: image sensing morphological morphology deep neuronal learning from:scadsfct networks classification remote mathematical computer hyperspectral vision] URL

Andre de Carvalho, Robson Bonidia, Jude Dzevela Kong, Mariana Dauhajre, Claudio Struchiner, Guilherme Goedert, Peter F. Stadler, Maria Emilia Walter, Danilo Sanches, Troy Day, Marcia Castro, John Edmunds, Manuel Colome-Hidalgo, Demian Arturo Herrera Morban, Edian F. Franco, Cesar Ugarte-Gil, Patricia Espinoza-Lopez, Gabriel Carrasco-Escobar, and Ulisses Rocha. Democratising Artificial Intelligence for Pandemic Preparedness and Global Governance in Latin American and Caribbean Countries. arXiv, 2024. [PUMA: Artificial Computer FOS Intelligence and information sciences] URL

Andre de Carvalho, Robson Bonidia, Jude Dzevela Kong, Mariana Dauhajre, Claudio Struchiner, Guilherme Goedert, Peter F. Stadler, Maria Emilia Walter, Danilo Sanches, Troy Day, Marcia Castro, John Edmunds, Manuel Colome-Hidalgo, Demian Arturo Herrera Morban, Edian F. Franco, Cesar Ugarte-Gil, Patricia Espinoza-Lopez, Gabriel Carrasco-Escobar, and Ulisses Rocha. Democratising Artificial Intelligence for Pandemic Preparedness and Global Governance in Latin American and Caribbean Countries. arXiv, 2024. [PUMA: sciences Artificial Intelligence and FOS Computer from:scadsfct information] URL

Tom Richard Vargis, and Siavash Ghiasvand. A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis using Operational Data Measurement. The International Conference for High Performance Computing, Networking, Storage, and Analysis, Dallas, Texas, USA, January 2022. [PUMA: Parallel, myOwn from:ghiasvan Learning and Computer Cluster Distributed, Computing, Machine Science] URL

Siavash Ghiasvand, and Florina M. Ciorba. Anomaly Detection in High Performance Computers: A Vicinity Perspective. 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC), 112--120, Amsterdam, Netherlands, June 2019. [PUMA: detection sensors, vicinity, Resource performance system, Correlation, components, exascale Graphics node system Bridges, failure architecture, processing units, HPC vicinity-based, computerised approach, hpc, privacy, myOwn anomaly approach from:ghiasvan statistical hardware, instrumentation, computing, management, high Hardware, computers, computing mechanism, prediction, detection, anonymized Computer analysis, Anomaly]

Tom Richard Vargis, and Siavash Ghiasvand. Content-Aware Depth-Adaptive Image Restoration. Proceedings of the 29th International Conference on Automation and Computing, Sunderland, UK, January 2024. [PUMA: Learning, myOwn from:ghiasvan and Computer Vision Pattern Machine Recognition, Science] URL

Siavash Ghiasvand, and Florina M. Ciorba. Anomaly Detection in High Performance Computers: A Vicinity Perspective. 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC), 112--120, Amsterdam, Netherlands, June 2019. [PUMA: Anomaly Bridges, Computer Correlation, Graphics HPC Hardware, Resource analysis, anomaly anonymized approach approach, architecture, components, computerised computers, computing computing, detection detection, exascale failure hardware, high hpc, instrumentation, management, mechanism, myOwn node performance prediction, privacy, processing sensors, statistical system system, units, vicinity, vicinity-based,]

Tom Richard Vargis, and Siavash Ghiasvand. A Light-weight and Unsupervised Method for Near Real-time Behavioral Analysis using Operational Data Measurement. The International Conference for High Performance Computing, Networking, Storage, and Analysis, Dallas, Texas, USA, January 2022. [PUMA: Cluster Computer Computing, Distributed, Learning Machine Parallel, Science and myOwn] URL

Tom Richard Vargis, and Siavash Ghiasvand. Content-Aware Depth-Adaptive Image Restoration. Proceedings of the 29th International Conference on Automation and Computing, Sunderland, UK, January 2024. [PUMA: Computer Learning, Machine Pattern Recognition, Science Vision and myOwn] URL

Markus Bauer, and Christoph Augenstein. Can Unlabelled Data Improve AI Applications? A Comparative Study on Self-Supervised Learning in Computer Vision.. Proceedings of the 18th Conference on Computer Science and Intelligence Systems, (35):93–101, IEEE, September 2023. [PUMA: Comparative Computer Data Learning Self-Supervised Study Unlabelled Vision.] URL

Markus Bauer, and Christoph Augenstein. Can Unlabelled Data Improve AI Applications? A Comparative Study on Self-Supervised Learning in Computer Vision.. Proceedings of the 18th Conference on Computer Science and Intelligence Systems, (35):93–101, IEEE, September 2023. [PUMA: Study Learning Computer Data Self-Supervised from:scadsfct Unlabelled Comparative Vision.] URL

Oscar J. Pellicer-Valero, Miguel-Ángel Fernández-Torres, Chaonan Ji, Miguel D. Mahecha, and Gustau Camps-Valls. Explainable Earth Surface Forecasting under Extreme Events. arXiv, 2024. [PUMA: (cs.LG), Computer FOS: Learning Machine and information sciences sciences, topic_earthenvironment] URL

Lester Kalms, Matthias Nickel, and Diana Göhringer. ArcvaVX: OpenVX Framework for Adaptive Reconfigurable Computer Vision Architectures. In Francesca Palumbo, Georgios Keramidas, Nikolaos Voros, and Pedro C. Diniz (Eds.), Applied Reconfigurable Computing. Architectures, Tools, and Applications - 19th International Symposium, ARC 2023, Proceedings, 97--112, Springer Science and Business Media B.V., Germany, 2023. [PUMA: topic_federatedlearn Computer FIS_scads FPGA, Framework, HLS, OpenVX Vision,] URL

Najdet Charaf, Julian Haase, Adrian Kulisch, Christian Von Elm, and Diana Göhringer. RTASS: a RunTime Adaptable and Scalable System for Network-on-Chip-Based Architectures. 2023 26th Euromicro Conference on Digital System Design (DSD), 585--592, IEEE, Sep 8, 2023. [PUMA: topic_federatedlearn Computer Embedded FIS_scads Machine Runtime, Scalability, Shape algorithms, architecture, computing, learning vision,] URL

Lucas Lange, Maurice-Maximilian Heykeroth, and Erhard Rahm. Assessing the Impact of Image Dataset Features on Privacy-Preserving Machine Learning. arXiv preprint arXiv:2409.01329, arXiv, September 2024. [PUMA: area_responsibleai area_bigdata (cs.CR), (cs.CV), (cs.LG), Computer Cryptography FOS: Learning Machine Pattern Recognition Security Vision and ep information sciences]

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, and Christian L. Müller. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv, 2019. [PUMA: (cs.LG), (math.NA), (physics.data-an), Analysis Analysis, Computer Data FOS: Learning Machine Mathematics, Numerical Physical Probability Statistics and information sciences sciences,] URL

Matti Wiegmann, Jennifer Rakete, Magdalena Wolska, Benno Stein, and Martin Potthast. If there's a Trigger Warning, then where's the Trigger? Investigating Trigger Warnings at the Passage Level. arXiv, 2024. [PUMA: topic_language (cs.CL), (cs.CY), Computation Computer Computers FOS: Language Society and information sciences sciences,] URL

Kim Breitwieser, Allison Lahnala, Charles Welch, Lucie Flek, and Martin Potthast. Modeling Proficiency with Implicit User Representations. arXiv, 2021. [PUMA: (cs.CL), Computation Computer FOS: Language and information sciences sciences,] URL

Marianne Maktabi, Hannes Köhler, Magarita Ivanova, Thomas Neumuth, Nada Rayes, Lena Seidemann, Robert Sucher, Boris Jansen-Winkeln, Ines Gockel, Manuel Barberio, and Claire Chalopin. Classification of hyperspectral endocrine tissue images using support vector machines. Int. J. Med. Robot., (16)5:1--10, Wiley, October 2020. [PUMA: and assisted computer guided head imaged imaging; intraoperative neck; surgery; thyroidectomy]