Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML. HemaSphere, (9)5Wiley, Mai 2025. [PUMA: AML machine_learning yaff] URL
Quantifying Uncertainty and Variability in Machine Learning: Confidence Intervals for Quantiles in Performance Metric Distributions. 2025. [PUMA: machine_learning quantifying uncertainty xack yaff] URL
Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials. Digital Discovery, (4)6:1478-1491, RSC, 2025. [PUMA: dynamics interatomic machine_learning nonadiabatic potentials yaff] URL
Transferable Machine Learning Potential X-MACE for Excited States using Integrated DeepSets. 2025. [PUMA: DeepSets X-MACE machine_learning yaff] URL
Chapter 5 - Artificial intelligence (AI) enhanced nanomotors and active matter. In Yuebing Zheng, und Zilong Wu (Hrsg.), Intelligent Nanotechnology, 113-144, Elsevier, 2023. [PUMA: Active_particles Feedback_control Machine_learning Multi_agent_reinforcement_learning Optical_control Reinforcement_learning nopdf] URL
ml4xcube: Machine Learning Toolkits for Earth System Data Cubes. 28302-28311, April 2025. [PUMA: Earth_System_Data_Cubes Machine_Learning ml4xcube yaff] URL
Machine learning for accelerated bandgap prediction in strain-engineered quaternary III–V semiconductors. The Journal of Chemical Physics, (159)10AIP Publishing, September 2023. [PUMA: Crystal_lattices Density_functional_theory First-principle_calculations Machine_learning Optoelectronic_application Optoelectronic_devices Regression_analysis Semiconductors Support_vector_machine yaff] URL
Decoding energy decomposition analysis: Machine‐learned Insights on the impact of the density functional on the bonding analysis. Journal of Computational Chemistry, (45)7:368–376, Wiley, November 2023. [PUMA: chemical_bonding density_functional_theory energy_decomposition_analysis feature_importance_analysis machine_learning zno] URL
Self-supervised machine learning methods for protein design improve sampling, but not the identification of high-fitness variants. Science Advances, (11)7:eadr7338, American Association for the Advancement of Science, Juni 2025. [PUMA: machine_learning protein_design topic_lifescience xack yaff]