Abstract
In this paper we propose a computationally efficient multiple hypothesis testing procedure for persistent homology. The computational efficiency of our procedure is based on the observation that one can empirically simulate a null distribution that is universal across many hypothesis testing applications involving persistence homology. Our observation suggests that one can simulate the null distribution efficiently based on a small number of summaries of the collected data and use this null in the same way that p-value tables were used in classical statistics. To illustrate the efficiency and utility of the null distribution we provide procedures for rejecting acyclicity with both control of the Family-Wise Error Rate (FWER) and the False Discovery Rate (FDR). We will argue that the empirical null we propose is very general conditional on a few summaries of the data based on simulations and limit theorems for persistent homology for point processes.
Users
Please
log in to take part in the discussion (add own reviews or comments).