Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about computational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores) on practical ontologies.
%0 Conference Paper
%1 gonzalez2022efficient
%A González, Larry
%A Ivliev, Alex
%A Krötzsch, Markus
%A Mennicke, Stephan
%B The Semantic Web – ISWC 2022
%C Germany
%D 2022
%E Sattler, Ulrike
%E Hogan, Aidan
%E Keet, Maria
%E Presutti, Valentina
%E Almeida, João Paulo A.
%E Takeda, Hideaki
%E Monnin, Pierre
%E Pirrò, Giuseppe
%E d’Amato, Claudia
%I Springer, Berlin u. a.
%K topic_graph topic_knowledge xack
%P 267 -- 283
%R 10.1007/978-3-031-19433-7_16
%T Efficient Dependency Analysis for Rule-Based Ontologies
%X Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about computational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores) on practical ontologies.
%@ 978-3-031-19432-0
@inproceedings{gonzalez2022efficient,
abstract = {Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about computational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores) on practical ontologies.},
added-at = {2024-11-28T16:27:18.000+0100},
address = {Germany},
author = {González, Larry and Ivliev, Alex and Krötzsch, Markus and Mennicke, Stephan},
biburl = {https://puma.scadsai.uni-leipzig.de/bibtex/296191f7faac3e4f1c2bed1cd097534d7/scadsfct},
booktitle = {The Semantic Web – ISWC 2022},
day = 16,
doi = {10.1007/978-3-031-19433-7_16},
editor = {Sattler, Ulrike and Hogan, Aidan and Keet, Maria and Presutti, Valentina and Almeida, João Paulo A. and Takeda, Hideaki and Monnin, Pierre and Pirrò, Giuseppe and d’Amato, Claudia},
interhash = {961b05943444dd66325f49c18d671d99},
intrahash = {96191f7faac3e4f1c2bed1cd097534d7},
isbn = {978-3-031-19432-0},
keywords = {topic_graph topic_knowledge xack},
language = {English},
month = oct,
note = {Publisher Copyright: {\textcopyright} 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.},
pages = {267 -- 283},
publisher = {Springer, Berlin [u. a.]},
series = {Lecture Notes in Computer Science, Volume 13489},
timestamp = {2025-08-23T23:52:09.000+0200},
title = {Efficient Dependency Analysis for Rule-Based Ontologies},
year = 2022
}